GEOGRAPHIC COORDINATES AND PROJECTION

Open the bash terminal and run

cd \$HOME/SE_data git pull

GEOGRAPHIC COORDINATES AND PROJECTION

Coordinate Reference Systems (CRS)

In general CRS can be divided into:

- geographic coordinate reference systems (angular coordinates).
- projected coordinate reference systems (cartesian or rectangular coordinates)

Geographic Coordinate Reference Systems (angular coordinates)

- 3D spherical representation.
- Measures in angular degree
- Earth has an irregular spheroid shape.
- we map the earth on a **Geodetic Datum** a reference ellipsoid with a given origin and orientation (2D angular coordinates)

Some Global Datums examples:

WGS84, World Geodetic System (default for GPS)

NAD83, North American Datum (very similar to WGS 84)

Geographic Coordinate Reference Systems (angular coordinates)

Features of the Geographic Coordinate Reference Systems

- Longitude
 - WEST-EAST (-180° +180°; total 360°)
 - Longitude (x dimension) is getting smaller going from the Equator to the Poles
 - ✓ 1° Longitude = 111.32 km = 69.17 mi at the Equator
 - \checkmark 1° Longitude / 120 = 0.008333 which is consider \sim 1km
- Latitude
 - NORD-SOUTH (+90° -90°; total 180°)
 - Latitude (y dimension) is similar going from the Equator to the Poles
 - \checkmark 1° Latitude = 110.57 km = 68.71 mi at the Equator

Geographic Coordinate Reference Systems for raster or vector files

- 1° Longitude / 120 = 0.008333 $111.32 \text{ km} \div 120 = 0.9276 \text{ km}$ which is consider ~1km
- 1 pixel cover 0.8605 km² and is getting smaller and smaller going towards the poles

Ir

Name	LST_MOYDmax_month3
Path	/home/selv/SE_data/exercise/geodata/LST/LST_MOYDmax_month3.tif
CRS	EPSG:4326 - WGS 84 - Geographic
Extent	26.99999999931788,-1.999999999969704: 35.99999999928804,5.00000000027995
Unit	degrees
Width	1080
Height	840
Data type	Float32 - Thirty two bit floating point
GDAL Driver Description	GTiff
GDAL Driver	GeoTIFF

LZW

27.5

Metadata

Description

Compression

Dataset

Band 1

More

information

Dimensions Origin

Pixel Size

 STATISTICS STDDEV=7.7379147697605 STATISTICS_VALID_PERCENT=100 AREA OR POINT=Area

STATISTICS APPROXIMATE=YES

 STATISTICS MAXIMUM=55.457366943359 STATISTICS MEAN=35.041194651097 STATISTICS_MINIMUM=12.587799072266

 TIFFTAG DATETIME=2015:05:19 16:31:35 TIFFTAG_DOCUMENTNAME=/nobackupp8/gamatull/dataproces/LST/

· TIFFTAG SOFTWARE=pktools 2.6.3 by Pieter Kempeneers

X: 1080 Y: 840 Bands: 1

0.0083333333333333359131,-0.0083333333333333359131

MYOD11A2 celsiusmean/LST MOYDmax month3.tif

/home/selv/SE data/exercise/geodata/LST/LST MOYDmax month3.tif

Information Source Source 🜠 Symbology

Transparency

Histogram Renderina

Pyramids

Metadata

Projected coordinate reference systems (Cartesian or rectangular coordinate reference systems)

 Map projections are never absolutely accurate representations of the spherical earth. As a result of the map projection process, every map shows distortions of angular conformity, distance and area.

Map projections with angular conformity

They are commonly used for navigational or meteorological tasks.

Mercator projection

Lambert Conformal Conic projection

Map projections with angular conformity

Universal Transverse Mercator (UTM)

To avoid too much distortion, the world is divided into 60 equal zones (Fuse) that are all 6 degrees wide. e.g. UTM 33S, UTM 3N

Map projections with equal distance

If your goal in projecting a map is to accurately measure distances

Plate Carree Equidistant Cylindrical Equirectangular projection

Azimuthal Equidistant projection

Map projections with equal areas

They are commonly used for navigational or meteorological tasks.

Alber's equal area,

Lambert's equal area

Mollweide Equal Area Cylindrical projections

CRS CODES

The CRS is defined by EPSG or SR-ORG or ESRI codes.

- EPSG stands for European Petroleum Survey Group and is an organization that maintains a geodetic parameter database with standard codes, the EPSG codes, for coordinate systems, datums, spheroids, units and such alike.
- SR-ORG are user defined projection.
- ESRI are projection defined by the ESRI company.
- The EPSG or SR-ORG or ESRI codes are defined at https://spatialreference.org/

Select the coordinate reference system for the vector file. The data points will be transformed from the layer coordinate reference system.

CRS in QGIS

Define/Assign projection: define a projection parameters on the metadata (the geographic features do not change)

Filter Q

Warp/Reproject: change the the projection parameters on the metadata and on the file (the geographic features change)

The CRS metadata can be stored in different file format

https://spatialreference.org/ref/epsg/4326/

PostGIS spatial ref sys INSERT statement

Proj4is format

GEOGCS["GCS WGS 1984",DATUM["D WGS 1984", SPHEROID["WGS_1984",6378137,298.257223563]],PR IMEM["Greenwich",0],UNIT["Degree",0.0174532925199

Reproject vector

Vector > Data Management Tools > Reproject Layers

Resampling/Aggregate

Resampling/Aggregate/Disaggregate = change pixel resol

- Continues data
 - Nearest Neighbor
 - Average
 - Median
 - Bilinear Interpolation (weighted average of the 4 surrounding cells)
 - Cubic Convolution Interpolation (weighted average of the 16 surrounding cells)
- Categorical data
 - Nearest Neighbor
 - Count
 - Majority

Reproject Raster

Raster > Projection > Warp (Reproj)

Additional material

https://docs.qgis.org/3.16/en/docs/ gentle_gis_introduction/ coordinate_reference_systems.html

Exercise

- Navigate in the /home/user/SE_data/exercise/geodata/landsat_ct
- · Merge all the tif file in only one large tif
- · Reproject the merged tif to match the projection of

/home/selv/SE_data/exercise/geodata/shp/USA_NAD27.shp

- Compress the output
- Select the optima re-sampling method
- Considering the original resolution is 0.0083333333 degree
 - Define the right target resolution
 - Crop the image in such a way that the tile border is a integer multiply of the defined pixel resolution