GEOCOMPUTATION AND MACHINE LEARNING FOR ENVIRONMENTAL APPLICATIONS

Date: 06 April 2021, 2.00 PM - 03 June 2021, 4.30 PM

Dr. Giuseppe Amatulli & Dr. Longzhu Shen

Learning objectives

With continuous practice through the weeks, students will become familiar with new command lines and cover numerous topics, including:

- Learning open source tools for GIS and RS applications.
- Acquiring command line utilities for spatial/temporal data under Linux OS.
- Acquiring command line utilities and ML theoretical foundation for environmental application.
- Developing data processing skills.
- Independent learning, critical thinking, problem solving.

Upon completion of the course, you should be able to:

- Apply the process of science, by conducting, analyzing, and interpreting findings related to GIS & RS project in the framework of ML applications
- Use quantitative reasoning for statistical/spatial analysis
- Convey your understanding of environmental phenomenons

Scientific knowledge

- Spatio/temporal analysis
- Spatio/temporal data integration
- Spatio/temporal modeling
- Geostatistic
- Machine Learning

Tools

Grass & Qgis Geographic Information Systems

Python: GIS, statistic, modeling, text manipulation

LINUX Bash shell programming

AWK for processing text-based data

GDAL/OGR/PKTOOLS geotools library for the manipulation of geospatial data

CDO geotools library for the manipulation of netCDF

http://spatial-ecology.net/docs/build/html/index.html

http://spatial-ecology.net/dokuwiki/doku.php

Knowing each other (3 min)

- Name, where are you coming from....
- What is your background and personal interest?
- Final project / PhD thesis objectives / keywords?
 - What data are you going to analyses?
 - Not sure yet... no problem
- Do you have an experience on Linux OS or other open source software?
- Do you currently use any programming language?
- What are your interests and expectations on this training?

Coding knowledge

Beginners / Inter mediated / Advanced

https://docs.google.com/forms/d/1i4FqM4xlwMBVVZzTViuDDqwL-BsaPs2m8NObB2_oTK0/edit#responses

Covered in the course

- AWK, GDAL, PKTOOLS, CDO, Python, R, ML (keras, TensorFlow, PyTorch)
- Parallel processing in bash and python environment
- Machine Learning: theoretical foundation and application in the environmental field
- Supervised and unsupervised classification application
- Image processing / raster processing / large data-set processing in a proper way
- Hydrological modeling

What is possible to acquire with the course

- I wish to expand my knowledge on geo-computation in open-source environment
- I would like to see a bit of everything, to get a glimpse of what is available
- Able to run extensive spatial data stuff quickly and without "pain"

What is NOT possible to acquire with the course

 Implement a machine learning optimizer for an inverse modeling system to quantify CO2 emissions.

Syllabus clarification

- Material http://spatial-ecology.net/docs/build/html/index.html
- Data via github https://github.com/selvaje/SE_data
- Online recording video lecture later shared on Spatial Ecology web
- Handling script and data via github (code)
- Community support among us for trouble shouting via slack

Reproducible research & "big data" processing

Codes that are easily published > no license constraints **Complex work-flows** > integrate different data analysis methods

Why use Linux/OpenSource?

Security: extremely stable and reliable, no viruses, interoperable: Unix, Windows, Mac, Android, ...

Applications: thousands of free programs, programming languages, server services

Versatility: minimum HW requirements, extremely portable, very fast performance

Freedom: free to download/test/install/modify/configure/develop/distribute/... it's fun!

Freedom? and why it's fun?

Code:

- Understating the code beyond a process
- Be able to modify the code
- · Build up your own algorithm.
- Use all the SW that I want without license constraints

Help:

- Get help from mailing list
- Keep in touch with the developers for code adjustment and improvement

Process:

- Job priority processing
- Job scheduling
- RAM management

Remote server:

- Automatic connection to remote servers
- Overpassing quota issues in remote servers, by creating a folder linked to your PC

Hardware resources:

- Storing temporal file in ram rather in the hard-disk, by creating a folder in the ram
- Get the best of different programing languages and create a unique work flow.

Last but not least:

Enjoy the life in the meantime the PC is working for you!

Ubuntu Linux operating system

Programming languages interaction

Ubuntu Linux operating system

Programming languages interaction

Open Foris Geospatial Toolkit

PKTOOLS a and OFT are a collection of programs written in C++ to perform operations on raster images.

Ubuntu Linux operating system

Programming languages interaction

Open Foris Geospatial Toolkit

PKTOOLS a and OFT are a collection of programs written in C++ to perform operations on raster images.