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Course Structure

GeoComputation
Linux environment
Geo computational tools : gdal/ogr, pktools, grass, etc.

⇑
GeoCoding
⇓

GeoModelling
GeoMath
GeoStats
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Class Survey

Topics Speakers
Python web

R web
TensorFlow guest ?

unSupervised Learning LS
Image processing ? LS ?
ML Optimisation LS

rivernetwork delinearation GA + LS
from project discussions GA + LS
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Course Outlook

Dates Contents Speaker
0504 projects + ML overview LS
0506 projects + ML opt. LS
0511 unsupervised learning LS
0518 specific topics LS + GA
0520 ANN guest
0525 ANN guest
0527 LSTM guest
0601 presentation day
0604 presentation day
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Project Workflow

Problem Statement : project definition, data collection

Model Construction

1 Explorative
Data exploration : missing data, correction, manipulation
Geocomput tools, math/stats, programming

2 Mathematical
Modelling knowledge, Programming skills

Model Analysis
solution determination
Model Assessment
fidelity, cost, complexity, flexibility, etc.
Model Deployment
presentation : map output
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Iterative Process

Problem
Statement

Model Con-
struction

Model
Analysis

Model
Assessment

Model
Deployment

GeoComput & ML ML Overview 2021-05-04 Tue 6 / 21



Project Guidance

Broad Sense
Prediction and/or Analytics
Coding languages

Evaluation
Clear concepts
Logic reasoning
Numerical ability
Presentability
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Machine Thinking

1930s : Turing machine :
mathematics into recipe

Can machine think ?
Turing test : indistinguishable
from human reactions

GeoComput & ML ML Overview 2021-05-04 Tue 8 / 21



Machine Thinking

1930s : Turing machine :
mathematics into recipe
Can machine think ?

Turing test : indistinguishable
from human reactions

GeoComput & ML ML Overview 2021-05-04 Tue 8 / 21



Machine Thinking

1930s : Turing machine :
mathematics into recipe
Can machine think ?
Turing test : indistinguishable
from human reactions

GeoComput & ML ML Overview 2021-05-04 Tue 8 / 21



AI Foundation

1950s : John McCarthy : AI research

Machine learning : learning from experience
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Optimal Solution
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Combinatorial explosion

average 200 possible
moves
anticipating next four
moves
more than 320 billion
combinations
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Expert System

1970s : capturing human knowledge
logic-based
deduction
logic knots
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Agent-based AI

1980 : Intelligence as emergent property rising from the interaction w/
the environment

Bayesian theorem : coping w/ uncertainty

100 out of 10,000 women at age forty who participate in routine
screening have breast cancer. 80 of every 100 women with breast
cancer will get a positive mammography. 950 out of 9,900 women
without breast cancer will also get a positive mammography. If
10,000 women in this age group undergo a routine screening, about
what fraction of women with positive mammographies will actually
have breast cancer?

P(C |+) =
P(+|C )P(C )

P(+|C )P(C ) + P(+|C c)P(C c)

=
0.8× 0.1

0.8× 0.1 + 0.96× 0.9
= 48%
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Deep Learning

ML : generating output w/o a recipe

Categories : supervised + unsupervised learning
Neural nets
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Well-posed Problem

Definition
A computer program is said to learn from experience E w.r.t. some tasks T
and performance measure P, if its performance at tasks T as measured by
P improves with experience E.

For example, a computer programs learns to play Go game might
improves its performance as measured by its ability to win,
through the experience of playing against itself.
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ML Basics

generalisation : perform well on previously unseen data

test error : L(f̂ (X − Y ))

capacity : ability to fit a wide range of functions
underfitting vs. overfitting
non-free lunch theorem : no ML algorithm universally better than
another
goal : seeking ML algorithms with good performance on the data
generating distribution of concern
hyperparameters tuning
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Bias vs. Variance

Given y = f (x) + ε

E [y ] = E [f + ε] = E [f ] = f

E [(y − f̂ )2] = E [(f + ε− f̂ )2]

= E [(f − E [f̂ ] + ε− f̂ + E [f̂ ])2]

= E [(f − E [f̂ ])2] + E [ε]2 + E [(E [f̂ ]− f̂ )2]− 2E [(E [f̂ ]− f̂ )(f − E [f̂ ])]

= E [(f − E [f̂ ])2] + E [ε]2 + E [(E [f̂ ]− f̂ )2]− 2(E [f̂ ]f − E [f̂ ]f + E [f̂ ]E [f̂ ]− E [f̂ ]E [f̂ ])

= Bias(f̂ 2) + Var [f̂ ] + σ2
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Bias vs. Variance
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MLE

Let pMDL(x ;θ) be a parametric family of probability distribution over the
same space indexed by θ.

θML = arg max
θ

∑
log(pMDL(x ;θ))

θML = arg max
θ

E[x ∼ p̂DAT ]log(pMDL(x ;θ))
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Bayes Statistics

θ as a prior distribution : p(θ)

p(θ|x (1) . . . x (m)) =
p(x (1), . . . , x (m)|θ)p(θ)

p(x (1), . . . , x (m))
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