

Artificial Neural Networks for Geodata

Antonio Fonseca

Our roadmap

Day 1:

- Into to Neural Nets
- Implementation (PyTorch)

Day 2:

- Autoencoders (AE), Variational AE and Generative Adversarial Nets
- Implementation (PyTorch)

Day 3:

- RNN, LSTM and Transformers
- Implementation (TensorFlow)

Agenda

1) Background in Artificial Neural Networks (ANNs)

- Biological inspiration
- Applications: Classification, Regression
- Components of ANNs
- 2) Using libraries to build an ANN (PyTorch)
- Opmitizers
- Dropout
- Early stop
- Regularization
- Deeper nets

Evolution of ANNs

- 1) Biological Learning Theory (1943, 1949)
- 2) Perceptron (1958)
- 3) Backpropagation (1986)
- 4) Deep Learning (2006, 2007)

ANNs architecture

Biological Neuron versus Artificial Neural Network

Brain "inspired" model

- Not enough info about brain processing...
- But we know the basics:

Hubel and Wiesel, 1959-1968

Fukushima, 1980

Learning algorithms

"A computer program is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**."

Tasks (T) Transcription Machine Translation Classification Anomaly detection Synthesis and sampling : Regression

Performance (P)

Accuracy rate

Adjusted R² RMSE/MSE/MAE

Experience (E)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Biological Neuron versus Artificial Neural Network

Solves linear problems Can't solve the XOR problem

I2

Perceptron

sigmoid + polynomial transform

Backpropagation

- Input x: Set the corresponding activation a¹ for the input layer.
- 2. Feedforward: For each l = 2, 3, ..., L compute $z^{l} = w^{l}a^{l-1} + b^{l}$ and $a^{l} = \sigma(z^{l})$.
- 3. **Output error** δ^L : Compute the vector $\delta^L = \nabla_a C \odot \sigma'(z^L)$.
- 4. Backpropagate the error: For each l = L 1, L 2, ..., 2compute $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$.
- 5. **Output:** The gradient of the cost function is given by $\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \text{ and } \frac{\partial C}{\partial b_j^l} = \delta_j^l.$

$$\frac{\partial E}{\partial w_{ji}^{l}} = \frac{\partial E}{\partial a_{i}^{l}} \frac{\partial a_{i}^{l}}{\partial z_{j}^{l}} \frac{\partial (w_{ji}^{l} a_{i}^{l-1})}{\partial w_{ji}^{l}}$$

Gradient

$$\Delta w_k = -\frac{\partial E}{\partial w_k}$$
$$= -\frac{\partial}{\partial w_k} \left(\frac{1}{m} \sum_i (w^T X_i - y_i)_i^2 \right)$$

 $w_{i+1} = w_i + \Delta w_k$

Stochastic gradient descent (SGD)

Hyperparameters

• Learning rate (α)

$$\Delta w_k = -\alpha \frac{\partial E}{\partial w_k}$$
$$= -\alpha \frac{\partial}{\partial w_k} \left(\frac{1}{m} \sum_i (w^T X_i - y_i)_i^2 \right)$$

 $w_{i+1} = w_i + \Delta w_k$

Stochastic gradient descent (SGD)

Practical test: lr_val = [1; 0.1; 0.01] momentum_val = 0 nesterov_val = 'False' decay_val = 1e-6

Result of a large learning rate α

Hyperparameters

• Learning rate (α)

$$\Delta w_k = -\alpha \frac{\partial E}{\partial w_k}$$
$$= -\alpha \frac{\partial}{\partial w_k} \left(\frac{1}{m} \sum_i (w^T X_i - y_i)_i^2 \right)^2$$

 $w_{i+1} = w_i + \Delta w_k$

Stochastic gradient descent (SGD)

Hyperparameters

• Learning rate (α)

 $\Delta w_k = -\alpha \frac{\partial E}{\partial w_k}$ $= -\alpha \frac{\partial}{\partial w_k} \left(\frac{1}{m} \sum_i (w^T X_i - y_i)_i^2 \right)$

 $w_{i+1} = w_i + \Delta w_k$

Stochastic gradient descent (SGD)

Multiple samples

Hyperparameters

- Learning rate (α)
- Momentum (β)

$$v_{i+1} = v\beta - \alpha \frac{\partial}{\partial w_k} \left(\frac{1}{m} \sum_i (w^T X_i - y_i)_i^2 \right)$$
$$w_{i+1} = w_i + v$$

Stochastic gradient descent with momentum (SGD+Momentum)

Hard to pick right hyperparameters

- Small learning rate: long convergence time
- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter

$$\Delta w_{k,t} = -\alpha \frac{\partial E_t}{\partial w_{k,t}} = -\alpha \nabla_w E(w_t)$$

$$g_{t,i} = \nabla_w E(w_{t,i})$$

$$G_{t+1,i} = G_{t,i} + g_{t,i} \odot g_{t,i}$$

$$w_{t+1,i} = w_{t,i} - \frac{\alpha}{\sqrt{G_{t,i} + \epsilon}} g_{t,i}$$

RMSprop: decaying average of the past squared gradients

Adadelta

$$E[g^2]_t = \gamma E[g^2]_{t-1} + (1 - \gamma)g_t^2$$

Decaying average

$$E[\Delta_w^2]_t = \gamma E[\Delta_w^2]_{t-1} + (1-\gamma)\Delta_w^2$$
$$\Delta w_t = \frac{\sqrt{E[\Delta_w^2]_t + \epsilon}}{\sqrt{G_{t,i} + \epsilon}} g_t$$

$$\Delta w_{k,t} = -\alpha \frac{\partial E_t}{\partial w_{k,t}} = -\alpha \nabla_w E(w_t) = -\alpha g_{t,i}$$

 $g_{t,i} = \nabla_{w} E(w_{t,i})$ $G_{t+1,i} = \gamma G_{t,i} + (1-\gamma)g_{t,i} \odot g_{t,i}$ $w_{t+1,i} = w_{t,i} - \frac{\alpha}{\sqrt{G_{t,i} + \epsilon}}g_{t,i}$

ADAM: decaying average of the past squared gradients and momentum

RMSprop / Adadelta

$$g_{t,i} = \nabla_{w} E(w_{t,i})$$

$$G_{t+1,i} = \gamma G_{t,i} + (1-\gamma)g_{t,i} \odot g_{t,i}$$

$$v_{t} = \beta_{2}v_{t-1} + (1-\beta_{2})g_{t}^{2}$$

$$m_{t} = \beta_{1}m_{t-1} + (1-\beta_{1})g_{t}$$

$$\widehat{m}_{t} = \frac{m_{t}}{1-\beta_{1}^{t}}$$

$$w_{t+1,i} = w_{t,i} - \frac{\alpha}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Which optimizer is the best?

Regularization

Dropout: accuracy in the absence of certain information

• Prevent dependence on any one (or any small combination) of neurons

Capacity, Overfitting and Underfitting

1) Make training error small

2) Make the gap between training and test error small

How training works

- 1. In each *epoch*, randomly shuffle the training data
- 2. Partition the shuffled training data into *mini-batches*
- For each mini-batch, apply a single step of gradient descent
 - Gradients are calculated via *backpropagation* (the next topic)
- 4. Train for multiple epochs

Debugging a neural network

- What can we do?
 - Should we change the learning rate?
 - Should we initialize differently?
 - Do we need more training data?
 - Should we change the architecture?
 - Should we run for more epochs?
 - Are the features relevant for the problem (i.e. is the Bayes error rate reasonable)?
- Debugging is an art
 - We'll develop good heuristics for choosing good architectures and hyper parameters