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Our roadmap 

Day 1: 
- Into to Neural Nets 
- Implementation (PyTorch)

Day 2:
- Autoencoders (AE), Variational AE and Generative Adversarial Nets
- Implementation (PyTorch)

Day 3: 
- RNN, LSTM and Transformers
- Implementation (TensorFlow)



Agenda

1) Background in Artificial Neural Networks (ANNs)
• Biological inspiration 
• Applications: Classification, Regression
• Components of ANNs

2) Using libraries to build an ANN (PyTorch) 
• Opmitizers
• Dropout
• Early stop
• Regularization
• Deeper nets



Evolution of ANNs

1) Biological Learning Theory (1943, 1949)
2) Perceptron (1958)
3) Backpropagation (1986)
4) Deep Learning (2006, 2007)

Google Books (by Goodfellow et. al, 2016)

First wave Second wave Third wave



ANNs architecture

Brain “inspired” model
• Not enough info about brain processing…
• But we know the basics: 

Hubel and Wiesel, 1959-1968 Fukushima, 1980



Learning algorithms

“A computer program is said to learn from experience E with respect to some class of tasks T and 
performance measure P , if its  performance at tasks in T , as measured by P , improves with 
experience E.”

Tasks (T)
Transcription
Machine Translation
Classification
Anomaly detection
Synthesis and sampling

⋮
Regression

Accuracy rate

Performance (P)

Adjusted R2

RMSE/MSE/MAE

Experience (E)

Supervised Learning

Unsupervised Learning

Reinforcement Learning
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Solves linear problems



Perceptron Multilayer Perceptron
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Optimizers

Gradient
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Stochastic gradient descent (SGD)



Optimizers

Hyperparameters
• Learning rate (𝛼)

Result of a large learning rate 𝛼
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Stochastic gradient descent (SGD)

Practical test:
lr_val = [1; 0.1; 0.01]
momentum_val = 0
nesterov_val = ‘False'
decay_val = 1e-6



Optimizers

Hyperparameters
• Learning rate (𝛼)
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Stochastic gradient descent (SGD)
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Optimizers

Hyperparameters
• Learning rate (𝛼)
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Stochastic gradient descent (SGD)

Local Minima

Multiple samples
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Optimizers

Hyperparameters
• Learning rate (𝛼)
• Momentum (𝛽)

𝑣(0! = 𝑣𝛽 − 𝛼
𝜕
𝜕𝑤1

1
𝑚2

(

𝑤$𝑋( − 𝑦( (
"

Stochastic gradient descent with momentum (SGD+Momentum)
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Optimizers

Hard to pick right hyperparameters
- Small learning rate: long convergence time
- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter
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- Learning rate might decrease too fast
- Might not converge



Optimizers

RMSprop: decaying average of the past squared gradients
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Optimizers

ADAM: decaying average of the past squared gradients and momentum
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Which optimizer is the best?



Regularization

Dropout: accuracy in the absence of certain information
• Prevent dependence on any one (or any small combination) of neurons



Capacity, Overfitting and Underfitting

1) Make training error small
2) Make the gap between training and test error small

Capacity (fitting ability)
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1. In each epoch, randomly shuffle the training data
2. Partition the shuffled training data into mini-batches
3. For each mini-batch, apply a single step of gradient 

descent
• Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs

How training works



• What can we do?
• Should we change the learning rate?
• Should we initialize differently?
• Do we need more training data?
• Should we change the architecture?
• Should we run for more epochs?
• Are the features relevant for the problem (i.e. is the Bayes error rate 

reasonable)?
• Debugging is an art
• We’ll develop good heuristics for choosing good architectures and hyper 

parameters

Debugging a neural network


