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Our roadmap

Day 1:
- Into to Neural Nets
- Implementation (PyTorch)

Day 2:
- Autoencoders (AE), Variational AE and Generative Adversarial Nets
- Implementation (PyTorch)

Day 3:
- RNN, LSTM and Transformers
- Implementation (TensorFlow)



Agenda

1) Background in Artificial Neural Networks (ANNs)
* Biological inspiration

* Applications: Classification, Regression
 Components of ANNs

2) Using libraries to build an ANN (PyTorch)
* Opmitizers

* Dropout

e Early stop

* Regularization

* Deeper nets
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Evolution of ANNSs

Google Books (by Goodfellow et. al, 2016)

0.000250

!

| I

| 1

0.000200 H

cybernetics

(connectionism -+ neural networks)

0.000150

0.000100

1940

1950 1960 1970

Year

First wave

1980 1990

Second wave

2000

—
Third wave

1) Biological Learning Theory (1943, 1949)
2) Perceptron (1958)

3) Backpropagation (1986)

4) Deep Learning (2006, 2007)



ANNSs architecture

Biological Neuron versus Artificial Neural Network
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Brain “inspired” model

* Not enough info about brain processing...
But we know the basics:
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Learning algorithms

“A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E.”

Tasks (T)

Transcription

Machine Translation
Classification

Anomaly detection
Synthesis and sampling

Regression

Performance (P)

Accuracy rate

Adjusted R2
RMSE/MSE/MAE

Experience (E)

Supervised Learning

Unsupervised Learning

Reinforcement Learning



Biological Neuron versus Artificial Neural Network

impulses carried
toward cell body

branches
dendrites ( of axon
»”
nucleusﬂ K . &on -@xmls
—;\\
?% (\\ impulses carried §
away from cell body
cell body
Task (T)
Input x € R"

y=wlx
Weights w € R"

f(x, W) = X1Wq1 + Xo W, + -4 XnWn

Dataset

(Xtrain' Ytrain)

X,y)
(Xtestr Viest)

Inputs —

Activation
Function

Performance (P)

1
MSE¢ese = EZ(ytest - ytest)l2
[

Training

1 T 2
Vi EZ(W Xtrain _ytrain)i -

0

Solves linear problems
Can’t solve the XOR problem

NISE("M" )

Linear regression example

-3 | 1 1 | |
—-1.0 -0.5 0.0 0.5 1.0
T1
Optimization of w
0.55 ; : ,

0.50
0.45
0.40
0.35
0.30
0.25

0.20 L L L
0.5 1.0 1.5

wy




AND

l I, out
0 0 0
0 1 0
1 0 0
1 1 1
OR
Iy I, out
0 0 0
0 1 1
1 0 1
1 1 1

/

'2
(0,0) (0, 1)

Perceptron

XOR
I, l, out
0 0 0
0 1 1
1 0 1
1 1 0

Multilayer Perceptron



sigmoid
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cost E = E(ab)

Backpropagation

1. Input z: Set the corresponding activation a'! for the input

layer.
2. Feedforward: For each ! = 2,3,...,L compute
z! = wla'! + b’ and o' = o(2Y).
Z—ZW a; '+ bj a =0 ZW a;t+ bl | =0(z)
3. Output error §”: Compute the vector §* = V,C ® o'(z%).
4. Backpropagate the error: Foreach! =L —1,L —2,...,2 , _OE OE da; OE .
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Optimizers

Gradient
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Stochastic gradient descent (SGD)
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O ptl m | Ze rS Practical test:

Ir_val=[1;0.1; 0.01]
momentum_val =0

nesterov_val = ‘False
Hyperparameters decay_val = 1e-6

* Learning rate (a)
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Stochastic gradient descent (SGD)

Result of a large learning rate



Optimizers

Hyperparameters
* Learning rate (a)
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Stochastic gradient descent (SGD)



Optimizers

Hyperparameters \,
* Learning rate (a)
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Stochastic gradient descent (SGD)

Multiple samples



Optimizers

Hyperparameters
* Learning rate (a)
* Momentum (f3)
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SGD

SGD+Momentum

Stochastic gradient descent with momentum (SGD+Momentum)



Optimizers

Hard to pick right hyperparameters
- Small learning rate: long convergence time
- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter

Aw,, = —a t _ —aV,E(w,) - Lefarnlng rate might decrease too fast
’ OWy ¢ - Might not converge
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Optimizers

RMSprop: decaying average of the past squared gradients

Adadelta
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Optimizers

ADAM: decaying average of the past squared gradients and momentum

RMSprop / Adadelta
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Which optimizer is the best?



Regularization

Dropout: accuracy in the absence of certain information

* Prevent dependence on any one (or any small combination) of neurons

W W
Present with Always
probability p present

(a) At training time (b) At test time

(a) Standard Neural Net (b) After applying dropout.



Capacity, Overfitting and Underfitting

1) Make training error small
2) Make the gap between training and test error small

Capacity (fitting ability)

1 2 9
Low capacity y = Z w;xt y = z w;xt y = z w;xt High capacity
i L i
Underfitting Appropriate capacity Overtitting
/‘.< m
L [




How training works

In each epoch, randomly shuffle the training data
Partition the shuffled training data into mini-batches

For each mini-batch, apply a single step of gradient
descent
* Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs



Debugging a neural network

* What can we do?
e Should we change the learning rate?
* Should we initialize differently?
* Do we need more training data?
* Should we change the architecture?
* Should we run for more epochs?
* Are the features relevant for the problem (i.e. is the Bayes error rate

reasonable)?
* Debugging is an art

 We'll develop good heuristics for choosing good architectures and hyper
parameters



