Probability Theory
 GeoComput \& ML 03 May 2022

ReCap

tot err = comput. + dat.

ReCap

comput error

- machine precision : $\epsilon_{\text {mach }}=\beta^{1-p} / 2$
- representation
- operation

ReCap

question : well posed
solution : well conditioned
condition number : $\left|\frac{\Delta y / y}{\Delta x / x}\right|$

ReCap

two cases

- linear system : cond $=\|\boldsymbol{A}\|\left\|\boldsymbol{A}^{-1}\right\|$
- least square : cond $=\|\boldsymbol{A}\|\left\|\boldsymbol{A}^{+}\right\|$
- projection
- residual

Guided Reading

Why a Hydrology Paper

- very broad : geoscience
- interdisciplinary : nature of geoscience
- math link : eqn 1-3
- personal experience
- class promise

Clouds

Physics

- outliers -> discovery
- Thomas Kuhn : science revolution

Clouds

Hydrology

- scale
- uncertainty

Clouds

Direction

Theory-Guided data science

Direction

Traditional Science

- iteration between data and hypotheses
- knowledge discovery
- knowledge buildup

Direction

Data Science

- actionable models
- data under/misrepresentation
- interpretation

Scale

SDM : relating field obs to its environment what's the scale for environment

Scale

Motivating example

coordinate : x
abundance : $N(x)$

$$
s(z(x), \sigma)=\sum z\left(x_{j}\right) w\left(x_{i}, x_{j}, \sigma\right)
$$

$\lambda(\cdot)$ as a function of its env
$z(x)$
$\log (\lambda(x))$$\sum_{i=1}^{p} \beta_{i} s_{i}\left(z_{i}\left(x_{i}\right), \sigma_{i}\right)^{i-1}$

Probability Theory

Basic Concepts

- sample space (S) : the collection of all the outcomes from a random experiment
- event $(A) \subseteq S$
- Prob. function (P) : $A \rightarrow \#$

Axioms

- $P(A) \in[0,1]$
- $P(S)=0$
- $P(\cup A)=\sum P(A)$

Propositions

$$
\begin{gathered}
P\left(A^{c}\right)=1-P(A) \\
P(A \cup B)=P(A)+P(B)-P(A \cap B)
\end{gathered}
$$

Propositions

Notation

$$
\begin{gathered}
{\left[A^{c}\right]=1-[A]} \\
{[A+B]=[A]+[B]-[A, B]}
\end{gathered}
$$

Cond. Prob.

$$
[A \mid B]=\frac{[A, B]}{[B]}
$$

Cond. Prob.

Example :
[rain,Sat] $=[$ rain,Sun] $=0.5$
[rain, two conted days] $=0.6$
[rain, weekend] ?

Cond. Prob.

[Sat + Sun] = [Sat] + [Sun] - [Sat, Sun]
[Sat, Sun] $=$ [Sun \mid Sat] [Sat] $=0.3$
$[$ Sat + Sun $]=1-[S a t$, Sun $]=0.7$

Independence

$$
[A, B]=[A][B]
$$

Independence

Example :
[rain, Sat] $=[$ rain, Sun] $=0.5$
Sat \Perp Sun
[rain, weekend] ?

Independence

[Sat, Sun] $=[$ Sat $]+[$ Sun $]=0.25$
[Sat + Sun] $=0.75$

Law of Total Probability

$$
[B]=\sum[B|A| A \mid A]
$$

Law of Total Probability

Kidney Stone Treatment

	A	B
S	$81 / 87=0.93$	$234 / 270=0.87$
L	$192 / 263=0.73$	$55 / 80=0.69$
	$273 / 350=0.78$	$289 / 350=0.83$

Law of Total Probability

Bonus

$$
\begin{aligned}
{[E \mid A] } & =[[S+L, E] \mid A] \\
& =[[S, E]+[L, E] \mid A] \\
& =[[S, E] \mid A]+[[L, E] \mid A] \\
& =\frac{[S, E, A]+[L, E, A]}{[A]} \\
& =[E \mid S, A][S, A]+[E \mid L, A][L, A]
\end{aligned}
$$

Bayes Theorem

$$
\begin{gathered}
{\left[B_{j} \mid A\right]=\frac{\left[A \mid B_{j}\right]\left[B_{j}\right]}{\sum\left[A \mid B_{j}\right]\left[B_{j}\right]}} \\
{\left[B_{j} \mid A\right]=\frac{\left[A \mid B_{j}\right]\left[B_{j}\right]}{[A]}=\frac{\left[A, B_{j}\right]}{[A]}}
\end{gathered}
$$

Bayes Theorem

Example :

- 1\% pop have cancer : [Y] = 0.01
- 80% test + if cancer : $[+\mid \mathrm{Y}]=0.8$
- 9.6% test + if no cancer : $[+\mid N]=0.096$

$$
[\mathrm{Y} \mid+]=\text { ? }
$$

$$
[Y \mid+]=\frac{[+\mid Y][Y]}{[+\mid Y][Y]+[+\mid N][N]}=0.48
$$

Random Variable

RV : real valued function mapped onto the sample space

Random Variable

Example

flip a coin twice, denote X as the \# of heads

$$
\begin{gathered}
X(T T)=0, X(T H)=X(H T)=1, X(H H)=2 \\
{[X=0]=1 / 4,[X=1]=1 / 2,[X=2]=1 / 4}
\end{gathered}
$$

Prob. Distr. of X

Random Variable

 pmf$$
\left[x_{k}\right]=\left[X=x_{k}\right], k=1,2,3 \ldots
$$

Expectation Value

$$
E(X)=\sum x_{k}\left[x_{k}\right]
$$

Expectation Value

coin game

	\mathbf{H}	\mathbf{T}
\mathbf{H}	3	-2
T	-2	1

$$
\left\{\begin{aligned}
{[H, U] } & =x \\
{[H, I] } & =y
\end{aligned}\right.
$$

$$
\Rightarrow E(U)=3 x y+(1-x)(1-y)-2(x(1-y)+y(1-x))
$$

Prob. Distr. Functions

Binomial

$$
[k ; n, p]=\binom{n}{k} p^{k}(1-p)^{(n-k)}
$$

Prob. Distr. Functions

Poisson

$$
[k ; \lambda]=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

Prob. Distr. Functions

Normal

$$
[x ; \mu, \sigma]=(\sigma \sqrt{2 \pi})^{-1} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right), x \in \mathbb{R}
$$

Acknowledgement

Thanks for Your Attention

References

- N. Cressie and C. K. Wikel, Statistics for Spatio-Temporal Data, 2011
- N. Cressie, Statistics for Spatial Data, 1991
- P. Olofsson and M. Andersson, Probability, Statistics, and Stochastic Processes, 2012
- R. Larsen and M. Marx, An introduction to mathematical statistics and its applications, 2018
- A. Agresti, Foundations of Linear and Generalized Linear Models, 2015
- C. McMulloch, et.al., Generalised, Linear and Mixed Models, 2008
- https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR028091
- https://ieeexplore.ieee.org/document/7959606
- https://link.springer.com/article/10.1007/s10980-016-0380-z
- https://en.wikipedia.org/wiki/Simpson\'s_paradox

