

Introduction to Machine Learning

Antonio Fonseca

Agenda

- 1) Intro to machine learning
- Defining learning
- Supervised vs Unsupervised learning
- The framework of learning algorithms
- 2) Example of Supervised learning
- Support Vector Machine (SVM)
- Optimization of SVM
- Extension of SVM to regression (SVR)

What is machine learning?

Machine learning is the process of identifying patterns in data.

Supervised learning

Supervised learning

Supervised learning

Supervised learning

Supervised learning

Supervised learning

Supervised learning

Supervised learning

Supervised learning

Supervised learning

Supervised learning

 Have a bunch of labelled data, want to label new data

Unsupervised learning

 Have a bunch of unlabeled data, want to organize it

Supervised learning

 Have a bunch of labelled data, want to label new data

Unsupervised learning

 Have a bunch of unlabeled data, want to organize it

Supervised learning

 Have a bunch of labelled data, want to label new data

Unsupervised learning

 Have a bunch of unlabeled data, want to organize it

Unsupervised Learning Model

Supervised learning

 Have a bunch of labelled data, want to label new data

Unsupervised learning

 Have a bunch of unlabeled data, want to organize it

Supervised Learning Model

Unsupervised Learning Model

 $\begin{bmatrix} .2 \\ .1 \end{bmatrix}$

Supervised learning

 Have a bunch of labelled data, want to label new data

Unsupervised learning

 Have a bunch of unlabeled data, want to organize it

Supervised learning

- Have a bunch of labelled data, want to label new data
- Learn a function $f(X) \rightarrow Y$ where all values of Y are known for some samples of X

Unsupervised learning

- Have a bunch of unlabeled data, want to organize it
- Learn an embedding $f(X) \to Y, X \in \mathbb{R}^n, Y \in \mathbb{R}^m, n \gg m$
- Lower dimensional, easier to interpret (e.g. as clusters)

Learning algorithms

"A computer program is said to learn from experience ${\bf E}$ with respect to some class of tasks ${\bf T}$ and performance measure ${\bf P}$, if its performance at tasks in ${\bf T}$, as measured by ${\bf P}$, improves with experience ${\bf E}$."

Tasks (T)	Performance (P)	Experience (E)
Transcription		
Machine Translation	Accuracy rate	Supervised Learning
Classification		
Anomaly detection		Unsupervised Learning
Synthesis and sampling		Onsupervised Learning
:	Adjusted R ²	
Regression	RMSE/MSE/MAE	Reinforcement Learning

Types of Machine Learning Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Classification Regression **Decision Making** Clustering Naive Bayes Linear Regression K-Means Clustering Neural Network Classifier Mean-shift Decision Trees Regression Clustering Support Vector Q-Learning Support Vector DBSCAN Clustering R Learning Machines Regression Agglomerative TD Learning Random Forest Decision Tree Hierarchical ■ K - Nearest Regression Clustering Neighbors Lasso Regression Gaussian Mixture Ridge Regression

Putting these frameworks in perspective

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample
 - (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Decision Boundaries

Find a hyperplane in an N-dimensional space that distinctly classifies the data points.

What is the correct decision boundary for this problem?

Tell me what you think PollEv.com/antoniooliveirafonseca958

Support Vector Machine

Find the optimal hyperplane in an N-dimensional space that distinctly classifies the data points.

Support Vector Machine

Maximize the margin of the classifier

Support Vectors

SVM Optimization

Hinge loss function

$$c(x, y, f(x)) = \begin{cases} 0, & \text{if } y * f(x) \ge 1\\ 1 - y * f(x), & \text{else} \end{cases}$$

Loss function for the SVM

$$\min_{w} \lambda \| w \|^{2} + \sum_{i=1}^{n} (1 - y_{i} \langle x_{i}, w \rangle)_{+}$$

Gradients

$$\frac{\delta}{\delta w_k} \lambda \parallel w \parallel^2 = 2\lambda w_k$$

$$\frac{\delta}{\delta w_k} \left(1 - y_i \langle x_i, w \rangle \right)_+ = \begin{cases} 0, & \text{if } y_i \langle x_i, w \rangle \ge 1 \\ -y_i x_{ik}, & \text{else} \end{cases}$$

Updating the weights:

No misclassification

$$w = w - \alpha \cdot (2\lambda w)$$

Misclassification

$$w = w + lpha \cdot (y_i \cdot x_i - 2\lambda w)$$

Support Vector Machine for Regression

- The best fit line is the hyperplane that has the maximum number of points.

- Limitations

- The fit time complexity of SVR is more than quadratic with the number of samples
- SVR scales poorly with number of samples (e.g., >10k samples). For large datasets, **Linear SVR** or **SGD Regressor**
- Underperforms in cases where the number of features for each data point exceeds the number of training data samples
- Underperforms when the data set has more noise, i.e. target classes are overlapping.