
Neural Nets
Antonio Fonseca 



Agenda
1) Perceptron 
• Quick recap
• Hands-on tutorial
• Intro to gradient descent and optimizers

2) Feedforward Neural Networks
• The limitations of Perceptrons
• Multi-layer Perceptron
• Training: the forward and back-propagation
• Debugging tips
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Linear Regression Optimization
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Mean squared error loss 
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More on the derivatives
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• Ridge regression: penalize with L2 norm
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• Closed form solution exists 𝒘∗ = 𝜆𝐼 + 𝑋0𝑋 12𝑋0𝒚
• LASSO regression: penalize with L1 norm
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• No closed form solution but still convex (optimal solution can be found)

Regularization



Regularization
• Prefers to share smaller 

weights
• Makes model smoother
• More Convex



Expectation Reality



• NAND gates can be constructed from perceptrons
• NAND gates are universal for computation
• Any computation can be built from NAND gates
• Therefore, perceptrons are universal for computation

Logic circuits with perceptrons

Nielsen, 2015



Perceptron: Threshold Logic



Activation functions



Now let’s get our hand dirty!



(Putting things in perspective)

Main differences:
- Perceptron: gradient-based optimization
- LR:  probabilistic model
- Perceptron: if the data are linearly separable, perceptron 

is guaranteed to converge.
- LR: likelihood can never truly be maximized with a finite 

w vector.



Optimizers

Gradient
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Stochastic gradient descent (SGD)



Optimizers

Hyperparameters
• Learning rate (𝛼)

Result of a large learning rate 𝛼
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Stochastic gradient descent (SGD)

Practical test:
lr_val = [1; 0.1; 0.01]
momentum_val = 0
nesterov_val = ‘False'
decay_val = 1e-6



Optimizers

Hyperparameters
• Learning rate (𝛼)
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Stochastic gradient descent (SGD)

𝑤#+% = 𝑤# + Δ𝑤*

Watch out for local minimal areas



• Gradient descent refers to taking a step in the direction of the 
gradient (partial derivative) of a weight or bias with respect to the 
cost function 
• Gradients are propagated backwards through the network in a 

process known as backpropagation
• The size of the step taken in the direction of the gradient is called the 

learning rate

Gradient Descent



Perceptron

Limitations of the Perceptron





• Sometimes called multi-layer perceptron (MLP)
• Output from one layer is used as input for the next (Feedforward network)

Architecture of Neural Networks

But how do we train it? 



• Store weights and biases as matrices
• Suppose we are considering the weights from the second (hidden) 

layer to the third (output) layer
• 𝑤 is the weight matrix with 𝑤:; the weight for the connection between the 𝑖th

neuron in the second layer and the 𝑗th neuron in the third layer
• 𝑏 is the vector of biases in the third layer
• 𝑎 is the vector of activations (output) of the 

2nd layer
• 𝑎< the vector of activations (output) of 

the third layer
𝒂< = 𝝈 𝒘𝒂 + 𝒃

Forward Propagation



Backpropagation
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Back to the code (Feedforward networks)

When people want to use Machine Learning without math



1. In each epoch, randomly shuffle the training data
2. Partition the shuffled training data into mini-batches
3. For each mini-batch, apply a single step of gradient 

descent
• Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs

How training works



• What can we do?
• Should we change the learning rate?
• Should we initialize differently?
• Do we need more training data?
• Should we change the architecture?
• Should we run for more epochs?
• Are the features relevant for the problem?

• Debugging is an art
• We’ll develop good heuristics for choosing good architectures and hyper 

parameters

Debugging a neural network


