
Neural Nets
Antonio Fonseca

Agenda
1) Perceptron
• Quick recap
• Hands-on tutorial
• Intro to gradient descent and optimizers

2) Feedforward Neural Networks
• The limitations of Perceptrons
• Multi-layer Perceptron
• Training: the forward and back-propagation
• Debugging tips

• Add an offset 𝑤!: 𝑓 𝒙;𝒘 = 𝒘"𝒙 + w!,		𝒟 = 𝒙#, 𝑦# , … 𝒙$, 𝑦$

𝒘∗ = argmin
𝒘
3
'(#

$

𝒘"𝒙' +𝑤! − 𝑦')

= argmin
𝒘
𝐿(𝒘;𝒟)

• Set *+ 𝒘;𝒟
*.!

= 0 for each 𝑖

Linear Regression Optimization

𝒘∗ = argmin
𝒘
)
#$%

&

𝒘'𝒙# + 𝑤(− 𝑦#)

Mean squared error loss

Rewrite:

More on the derivatives

F(x)

A

B

C

D

E

F

G

H

I

J

K

• Ridge regression: penalize with L2 norm

𝒘∗ = argmin3
'

𝐿(𝑓(𝒙'; 𝒘), 𝑦') + 𝜆3
/(#

0

𝑤/)

• Closed form solution exists 𝒘∗ = 𝜆𝐼 + 𝑋0𝑋 12𝑋0𝒚
• LASSO regression: penalize with L1 norm

𝒘∗ = argmin3
'

𝐿(𝑓(𝒙'; 𝒘), 𝑦') + 𝜆3
/(#

0

𝑤/

• No closed form solution but still convex (optimal solution can be found)

Regularization

Regularization
• Prefers to share smaller

weights
• Makes model smoother
• More Convex

Expectation Reality

• NAND gates can be constructed from perceptrons
• NAND gates are universal for computation
• Any computation can be built from NAND gates
• Therefore, perceptrons are universal for computation

Logic circuits with perceptrons

Nielsen, 2015

Perceptron: Threshold Logic

Activation functions

Now let’s get our hand dirty!

(Putting things in perspective)

Main differences:
- Perceptron: gradient-based optimization
- LR: probabilistic model
- Perceptron: if the data are linearly separable, perceptron

is guaranteed to converge.
- LR: likelihood can never truly be maximized with a finite

w vector.

Optimizers

Gradient

Δ𝑤* = −
𝜕𝐸
𝜕𝑤*

= −
𝜕
𝜕𝑤*

1
𝑚)

#

𝑤'𝑋# − 𝑦# #
)

𝑤#+% = 𝑤# + Δ𝑤*

Stochastic gradient descent (SGD)

Optimizers

Hyperparameters
• Learning rate (𝛼)

Result of a large learning rate 𝛼

Δ𝑤* = −𝛼
𝜕𝐸
𝜕𝑤*

= −𝛼
𝜕
𝜕𝑤*

1
𝑚)

#

𝑤'𝑋# − 𝑦# #
)

𝑤#+% = 𝑤# + Δ𝑤*

Stochastic gradient descent (SGD)

Practical test:
lr_val = [1; 0.1; 0.01]
momentum_val = 0
nesterov_val = ‘False'
decay_val = 1e-6

Optimizers

Hyperparameters
• Learning rate (𝛼)

Δ𝑤* = −𝛼
𝜕𝐸
𝜕𝑤*

= −𝛼
𝜕
𝜕𝑤*

1
𝑚)

#

𝑤'𝑋# − 𝑦# #
)

Stochastic gradient descent (SGD)

𝑤#+% = 𝑤# + Δ𝑤*

Watch out for local minimal areas

• Gradient descent refers to taking a step in the direction of the
gradient (partial derivative) of a weight or bias with respect to the
cost function
• Gradients are propagated backwards through the network in a

process known as backpropagation
• The size of the step taken in the direction of the gradient is called the

learning rate

Gradient Descent

Perceptron

Limitations of the Perceptron

• Sometimes called multi-layer perceptron (MLP)
• Output from one layer is used as input for the next (Feedforward network)

Architecture of Neural Networks

But how do we train it?

• Store weights and biases as matrices
• Suppose we are considering the weights from the second (hidden)

layer to the third (output) layer
• 𝑤 is the weight matrix with 𝑤:; the weight for the connection between the 𝑖th

neuron in the second layer and the 𝑗th neuron in the third layer
• 𝑏 is the vector of biases in the third layer
• 𝑎 is the vector of activations (output) of the

2nd layer
• 𝑎< the vector of activations (output) of

the third layer
𝒂< = 𝝈 𝒘𝒂 + 𝒃

Forward Propagation

Backpropagation
𝐸 =

1
2)

#

𝑎#, − 𝑦#
)

𝑎-. = 𝜎)
#

𝑤-#. 𝑎#./% + 𝑏-. = 𝜎(𝑧-.)𝑧-. =)
#

𝑤-#. 𝑎#./% + 𝑏-.

𝑐𝑜𝑠𝑡 𝐸 = 𝐸(𝑎,)

𝛿-, ≡
𝜕𝐸
𝜕𝑧-,

=
𝜕𝐸
𝜕𝑎#,

𝜕𝑎#,

𝜕𝑧-,
=
𝜕𝐸
𝜕𝑎-,

𝜎′(𝑧-,) (1)

𝛿-. ≡
𝜕𝐸
𝜕𝑧-.

=
𝜕𝐸
𝜕𝑧#.+%

𝜕𝑧#.+%

𝜕𝑧-.
=
𝜕𝑧#.+%

𝜕𝑧-.
𝛿#.+%

=
𝜕(∑#𝑤#-.+%𝑎-. + 𝑏#.+%)

𝜕𝑧-.
𝛿-.+% =)

#

𝑤#-.+%𝛿#.+%𝜎′(𝑧-.) (2)
𝜕𝐸
𝜕𝑤-#.

=
𝜕𝐸
𝜕𝑎#.

𝜕𝑎#.

𝜕𝑧-.
𝜕(𝑤-#. 𝑎#./%)

𝜕𝑤-#.

Back to the code (Feedforward networks)

When people want to use Machine Learning without math

1. In each epoch, randomly shuffle the training data
2. Partition the shuffled training data into mini-batches
3. For each mini-batch, apply a single step of gradient

descent
• Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs

How training works

• What can we do?
• Should we change the learning rate?
• Should we initialize differently?
• Do we need more training data?
• Should we change the architecture?
• Should we run for more epochs?
• Are the features relevant for the problem?

• Debugging is an art
• We’ll develop good heuristics for choosing good architectures and hyper

parameters

Debugging a neural network

