SPATIAL ECOLOCY

Perceptron

Antonio Fonseca

Agenda

1) Finalize SVM/SVR (remaining from Class 1)
2) Introduction to optimization

- Review on Linear Regression
- Minimizing loss functions
- Regularization

3) Perceptron

- The universal approximator
- Intro to optimizers
- Hands-on tutorial

Support Vector Machine

Find the optimal hyperplane in an N -dimensional space that distinctly classifies the data points.

Support Vector Machine

Hyperplane equation: $f(x)=\mathbf{w} \cdot x+b$
Distance (D) from a point to the hyperplane

$$
D=\frac{|\mathbf{w} \cdot x+b|}{\|\mathbf{w}\|}
$$

Minimize the weights, increase distance
Classification task

$$
\begin{cases}w x_{i}+b \geq+1 & \text { when } y_{i}=+1 \\ w x_{i}+b \leq-1 & \text { when } y_{i}=-1\end{cases}
$$

SVM Optimization

Hinge loss function
$c(x, y, f(x))= \begin{cases}0, & \text { if } y * f(x) \geq 1 \\ 1-y * f(x), & \text { else }\end{cases}$

Loss function for the SVM
$\min _{w} \lambda\|w\|^{2}+\sum_{i=1}^{n}\left(1-y_{i}\left\langle x_{i}, w\right\rangle\right)_{+}$

Gradients

Hinge loss function
$c(x, y, f(x))= \begin{cases}0, & \text { if } y * f(x) \geq 1 \\ 1-y * f(x), & \text { else }\end{cases}$

Updating the weights:
No misclassification
$w=w-\alpha \cdot(2 \lambda w)$
Misclassification
$w=w+\alpha \cdot\left(y_{i} \cdot x_{i}-2 \lambda w\right)$

Support Vector Machine for Regression

How do I turn the SVM into a SVR?

SVM

SVR(?)

SVR Optimization

Loss
$L(y, f(x, \mathbf{w}))= \begin{cases}0, & |y-f(x, \mathbf{w})| \leq \epsilon \\ |y-f(x, \mathbf{w})| & \text { o.w. },\end{cases}$

Constraints

$$
\left|y_{i}-w_{i} x_{i}\right| \leq \epsilon+\left|\xi_{i}\right|
$$

* Deviation from the margin (slack)

Margin of error

Loss function for the SVR

$$
\min \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n}\left|\xi_{i}\right|
$$

Example: House price in Boston

Conclusions:

- Several the points still fall outside the margins
- Consider the possibility of errors that are larger than ϵ
- Add some slack

Example: House price in Boston

Conclusions:

- As C increases, our tolerance for points outside of ϵ also increases.
- As C approaches 0 , the tolerance approaches 0 and the equation collapses into the simplified (although sometimes infeasible) one.

Example: House price in Boston

- We can use grid search over C to find the ideal amount of slack (more points within margin).
- Since our original objective of this model was to maximize the prediction within our margin of error $(\$ 5,000)$, we want to find the value of C that maximizes \% within Epsilon. Thus, $C=6.13$.

Support Vector Machine for Regression

- The best fit line is the hyperplane that has the maximum number of points.
- Limitations
- The fit time complexity of SVR is more than quadratic with the number of samples
- SVR scales poorly with number of samples (e.g., >10k samples). For large datasets, Linear SVR or SGD Regressor
- Underperforms in cases where the number of features for each data point exceeds the number of training data samples
- Underperforms when the data set has more noise, i.e. target classes are overlapping.

Not linearly separable

Kernel tricks

"Give me enough dimensions and I will classify the whole world".

Zucker, Steve

Time for a quiz and tutorial!
https://tinyurl.com/GeoComp2024

Intro to optimization

Review on Linear Regression

Task (T)

Performance (P)

$$
M S E_{\text {test }}=\frac{1}{m} \sum_{i}\left(\hat{y}_{\text {test }}-y_{\text {test }}\right)_{i}^{2}
$$

$$
f(x, w)=x_{1} w_{1}+x_{2} w_{2}+\cdots+x_{n} w_{n}
$$

Dataset

$(X, y) \quad\left\{\begin{array}{l}\left(X_{\text {train }}, y_{\text {train }}\right) \\ \left(X_{\text {test }}, y_{\text {test }}\right)\end{array}\right.$

Training
$\nabla_{w}\left(\frac{1}{m} \sum_{i}\left(w^{T} X_{\text {train }}-y_{\text {train }}\right)_{i}^{2}\right)=0$

Linear Regression Optimization

- Add an offset $w_{0}: f(\boldsymbol{x} ; \boldsymbol{w})=\boldsymbol{w}^{T} \boldsymbol{x}+\mathrm{w}_{0}, \mathcal{D}=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots\left(\boldsymbol{x}_{n}, y_{n}\right)\right\}$

$$
\begin{gathered}
\boldsymbol{w}^{*}=\arg \min _{\boldsymbol{w}} \sum_{i=1}^{n}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}+w_{0}-y_{i}\right)^{2} \\
=\arg \min _{\boldsymbol{w}} L(\boldsymbol{w} ; \mathcal{D})
\end{gathered}
$$

- Set $\frac{\partial L(\boldsymbol{w} ; \mathcal{D})}{\partial w_{i}}=0$ for each i

Mean squared error loss

Rewrite:

$$
\begin{aligned}
(X \mathbf{w}-\mathbf{y})^{T}(X \mathbf{w}-\mathbf{y}) & =\left(\mathbf{w}^{T} X^{T}-\mathbf{y}^{T}\right)(X \mathbf{w}-\mathbf{y}) \\
& =\mathbf{w}^{T} X^{T} X \mathbf{w}-\mathbf{w}^{T} X^{T} \mathbf{y}-\mathbf{y}^{T} X \mathbf{w}+\mathbf{y}^{T} \mathbf{y} \\
& =\mathbf{w}^{T} X^{T} X \mathbf{w}-2 \mathbf{w}^{T} X^{T} \mathbf{y}+\mathbf{y}^{T} \mathbf{y} \\
\frac{\partial}{\partial w} \mathbf{w}^{T} X^{T} X \mathbf{w}-2 \mathbf{w}^{T} X^{T} \mathbf{y}+\mathbf{y}^{T} \mathbf{y} & =0 \\
2 X^{T} X \mathbf{w}-2 X^{T} \mathbf{y} & =0 \\
X^{T} X \mathbf{w} & =X^{T} \mathbf{y} \\
\mathbf{w} & =\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}
\end{aligned}
$$

Regularization

- Ridge regression: penalize with L2 norm

$$
\boldsymbol{w}^{*}=\arg \min \sum_{i} L\left(f\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right), y_{i}\right)+\lambda \sum_{j=1}^{m} w_{j}^{2}
$$

- Closed form solution exists $\boldsymbol{w}^{*}=\left(\lambda I+X^{T} X\right)^{-1} X^{T} \boldsymbol{y}$
- LASSO regression: penalize with L1 norm

$$
\boldsymbol{w}^{*}=\arg \min \sum_{i} L\left(f\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right), y_{i}\right)+\lambda \sum_{j=1}^{m}\left|w_{j}\right|
$$

- No closed form solution but still convex (optimal solution can be found)

Loss Minimization

Convex loss functions can be solved by differentiation, at the point where Loss is minimum the derivative wrt to parameters should be 0 !

Regularization

- Prefers to share smaller weights
- Makes model smoother
- More Convex

More on the derivatives

https://tinyurl.com/GeoComp2024

Expectation

Perceptron

Perceptron: Threshold Logic

Perceptron: Threshold Logic

$$
\mathcal{L}_{\text {perc }}(\mathbf{x}, y)=\left\{\begin{array}{cc}
0 & \text { if } y \mathbf{w}^{\top} \mathbf{f}(\mathbf{x})>0 \\
-y \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}) & \text { if } y \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}) \leq 0
\end{array}\right.
$$

Activation functions

Sigmoid
$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ReLU

 $\max (0, x)$Leaky ReLU
$\max (0.1 x, x)$

Maxout

$$
\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)
$$

ELU

$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Optimizers

Gradient

$$
\begin{aligned}
& \Delta w_{k}=-\frac{\partial E}{\partial w_{k}} \\
& =-\frac{\partial}{\partial w_{k}}\left(\frac{1}{m} \sum_{i}\left(w^{T} X_{i}-y_{i}\right)_{i}^{2}\right) \\
& w_{i+1}=w_{i}+\Delta w_{k}
\end{aligned}
$$

Stochastic gradient descent (SGD)

Optimizers

Hyperparameters

- Learning rate (α)
$\Delta w_{k}=-\alpha \frac{\partial E}{\partial w_{k}}$
$=-\alpha \frac{\partial}{\partial w_{k}}\left(\frac{1}{m} \sum_{i}\left(w^{T} X_{i}-y_{i}\right)_{i}^{2}\right)$
$w_{i+1}=w_{i}+\Delta w_{k}$
Stochastic gradient descent (SGD)

Practical test:
|r_val = [1; 0.1; 0.01]
momentum_val = 0
nesterov_val =
'False'
decay_val = 1e-6

Result of a large learning rate α

Optimizers

Hyperparameters

- Learning rate (α)

$$
\begin{aligned}
& \Delta w_{k}=-\alpha \frac{\partial E}{\partial w_{k}} \\
& =-\alpha \frac{\partial}{\partial w_{k}}\left(\frac{1}{m} \sum_{i}\left(w^{T} X_{i}-y_{i}\right)_{i}^{2}\right) \\
& w_{i+1}=w_{i}+\Delta w_{k}
\end{aligned}
$$

Stochastic gradient descent (SGD)

Gradient Descent

- Gradient descent refers to taking a step in the direction of the gradient (partial derivative) of a weight or bias with respect to the loss function
- Gradients are propagated backwards through the network in a process known as backpropagation
- The size of the step taken in the direction of the gradient is called the learning rate

Time for a quiz and tutorial!
https://tinyurl.com/GeoComp2024

