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Agenda

1) Finalize SVM/SVR (remaining from Class 1)

2) Introduction to optimization
* Review on Linear Regression

* Minimizing loss functions

* Regularization

3) Perceptron

* The universal approximator
* Intro to optimizers

* Hands-on tutorial



Support Vector Machine

Find the optimal hyperplane in an N-dimensional space that distinctly
classifies the data points.

N
Maximum margin
N




Support Vector Machine

Hyperplane equation: f(x) = W I + b

Distance (D) from a point to the hyperplane

Classification task

wr; +b< —1 wheny, = —1,

{ wx; +b>+4+1 when y;, = +1



SVM Optimization

Gradients
Hinge loss function 5
_/0 if y * f(x) > 1 — Al w > =2iw
cwrfE={ " L e S
o 0, if y;i{x;, w) > 1
Loss function for the SVM W (1 — YilXi, W))+ = { —yixg, else

min, | w 1> + Y (1= yi(xi, w))s

i=1

LOSS‘ Gradient

Updating the weights:
No misclassification
w=w-—a-(2\w)

Misclassification

w=w+a-(y x— 2\w)
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Support Vector Machine for Regression

How do | turn the SVM into a SVR?

SVM SVR(?)
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SVR Optimization

Loss
R T

Constraints

ly; — wix;| < €+ &

/ L Deviation from the margin (slack)

Margin of error

Loss function for the SVR
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House Price (Thousands of Dollars)
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Example: House price in Boston

SVR, €=5

SVR Prediction

# of Rooms

Conclusions:
- Several the points still fall outside the margins
- Consider the possibility of errors that are larger
than €
- Add some slack



House Price (Thousands of Dollars)
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Example: House price in Boston

SVR, €=5, C=1.0
SVR Prediction

# of Rooms

Conclusions:

As C increases, our tolerance for points outside of
€ also increases.

As C approaches 0, the tolerance approaches 0
and the equation collapses into the simplified
(although sometimes infeasible) one.



Example: House price in Boston

We can use grid search over C to find the ideal amount

of slack (more points within margin). €=5, (=6.13

SVR Prediction

Since our original objective of this model was to o
maximize the prediction within our margin of error
($5,000), we want to find the value of C that maximizes
% within Epsilon. Thus, C=6.13. -
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Support Vector Machine for Regression

- The best fit line is the hyperplane that has the maximum number of
points.

- Limitations

The fit time complexity of SVR is more than quadratic with the number of
samples

SVR scales poorly with number of samples (e.g., >10k samples). For large
datasets, Linear SVR or SGD Regressor

Underperforms in cases where the number of features for each data point
exceeds the number of training data samples

Underperforms when the data set has more noise, i.e. target classes are
overlapping.



What if...

Non-linear spaces

Linearly separable

Not linearly separable

1.0



Kernel tricks
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“Give me enough dimensions
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Time for a quiz and tutorial!
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https://tinyurl.com/GeoComp2024



Intro to
optimization



Review on Linear Regression

Linear regression example
I I 1 | |

Task (T) Performance (P)
Input x € R™ ~ 1 .

Weigh R™ y=wix MSE¢ese = Ez(yw“ = Yeest)i 310 o5 00 05 10
eights w € - ' S ==

T

Optimization of w
f,w) = xwy +x,Wy + -+ X, Wy,

I I 1

Dataset

Training

MSE (train)

(X train: Y train)

1 Z
(Xtest; ytest) w m i train ytram i

0.5 1.0 1.5

w]

Solves linear problems

Can’t solve more complex problems (e.g., XOR problem)



Linear Regression Optimization

« Add an offset wy: f(x; w) = wlix +wy, D = {(x1, V1), ... (X, V)}
n
w" = arg minZ(wai +w, — yl-)2
w
i=1

= argmin L(w; D)
w

OL(w;D)

= (O foreachi
ow;

* Set




Mean squared error loss

Rewrite:
(Xw—y) (Xw—-y)=w X' —y")(Xw—y)

—wi X' Xw—-w X'y -y Xw+yly

=w! X' Xw—-2w! X1y +yly.
%WTXTXW 22wl Xy +yly =0

2XTXw—-2XTy =0
XT'Xw=X"y
w=(X"X)"' X"y



Regularization

* Ridge regression: penalize with L2 norm

w" = argmlnzL(f(xl,w) Vi) +/12W

* Closed form solution exists w* = (Al + XTX)"1XTy
e LASSO regression: penalize with L1 norm

w" = arg mlnz L(f(x;;w),y;) + AZ|W]|

* No closed form solutlon but still convex (optlmal solutlon can be
found)



Loss Minimization

Minimum

Convex loss functions can be solved by differentiation, at the point where Loss is minimum
the derivative wrt to parameters should be 0!



Regularization

* Prefers to share smaller
weights

V/ \(0 * Makes model smoother

* More Convex
(D
w/2/ w/2
@, b



More on the derivatives




Expectation




Perceptron



Perceptron: Threshold Logic

Axon terminal

Soma (cell body)

|\
| — :
| Qoﬁ Outputs

Myelin sheat

Output points = synapses

| Myelinated axon trunk Weights Bias

> b
1 O0—— W1

T Activation
function  Output

Inputs ¢ T2 o—— W2 ——— Z f Y

e

r3 o—— W3




Perceptron: Threshold Logic

0 if yw ' f(x) > 0
—yw  f(x) ifyw' f(x) <0

Lperc (x,9) = {

Bias
b

T Activation
/\ function  Output
Z - f > Y

Weights

1 o—» W1

Inputs ¢ T2 o—— W2




Activation functions

Sigmoid 1 Leaky ReLU )
_ 1 max (0.1, x)
O'(CII) T 14e—=
tanh Maxout
tanh(z) . o max(w{ x + by, w3 z + by)
RelLU / ELU ._/
T x>0
maX(O7 .CU) ~ ) {a(e"’ 1) z<0 - - o



Optimizers

Gradient -
v OE
Wk__a—wk Error

A A .‘ "‘— ‘.‘1 - I T «‘
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Wit = Wi + Awy

‘1"’ 1

Stochastic gradient descent (SGD)

w




O ptl m Ize rS Practical test:

Ir_val=[1;0.1; 0.01]
momentum_val =0
nesterov_val =

Hyperparameters ‘False'

. decay_val = 1le-6
* Learning rate (a) -

0E
AWk = _aa_VVk

— —C{a—v‘/k< Z(WTX yl )

Wit1 = Wi + Awyg

Stochastic gradient descent (SGD)

Result of a large learning rate a



Optimizers

Hyperparameters
* Learning rate ()

0E

Wit = Wi + Awy

Stochastic gradient descent (SGD)



Gradient Descent

* Gradient descent refers to taking a step in the direction of the
gradient (partial derivative) of a weight or bias with respect to the
loss function

* Gradients are propagated backwards through the network in a
process known as backpropagation

* The size of the step taken in the direction of the gradient is called the
learning rate



Time for a quiz and tutorial!
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https://tinyurl.com/GeoComp2024



