SPATIAL ECOLOGY

Introduction to Machine Learning & SVM

Antonio Fonseca

Agenda

- 1) Logistics
- Structure of the classes
- Our roadmap
- 2) Intro to machine learning
- Defining learning
- Supervised vs Unsupervised learning
- The framework of learning algorithms
- 3) Example of Supervised learning
- Support Vector Machine (SVM)
- Optimization of SVM
- Extension of SVM to regression (SVR)

Structure of the classes

- Recap of the previous class (aka, warm up) 15 min
- Address questions from the previous class/assignment 15 min
- New content 30 min
- Coffee break 10 min
- More content / Quiz 30 min
- Hands-on tutorial 30 min
- Questions 20 min

Our roadmap

Class 1: Intro to machine learning (ML) and SVM (May 14th)

- Types of learning
- Hyperplanes and boundaries
- Support Vector Machine

Class 2: Optimizers and the Perceptron (pt. 1) (May 16th)

- Regression with and without ML
- Minimizing loss functions
- Optimizers
- Perceptron

Our roadmap

Class 3: Perceptron (pt. 2) and Neural Networks (pt. 1) (May 28th)

- Perceptron as a regressor
- Activation functions
- When Perceptrons will fail you
- Neural Networks

Class 4: Neural Networks (pt. 2) (May 30th)

- How to train your network
- Hyperparameter search
- Using Weights and Biases to inspect your models

Our roadmap

Class 5: Convolutional Neural Networks (June 4th)

- Neural networks for spatial data
- Kernels, padding, pooling
- Study case with satellite images

Class 6: BYOP (Bring Your Own Paper) (June 6th)

- Pick a paper related to your field that is using machine learning
- Challenge me!

What is machine learning?

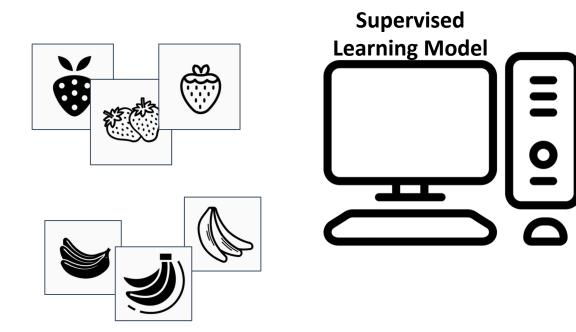
https://tinyurl.com/GeoComp2024

What is machine learning?

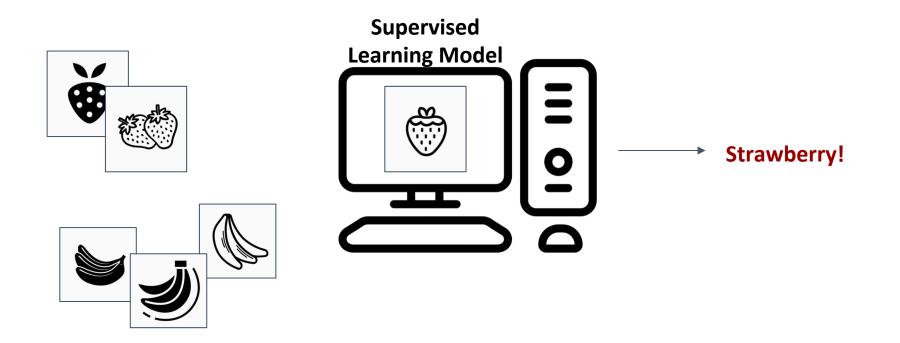
Machine learning is the process of identifying patterns in data.

Supervised learning

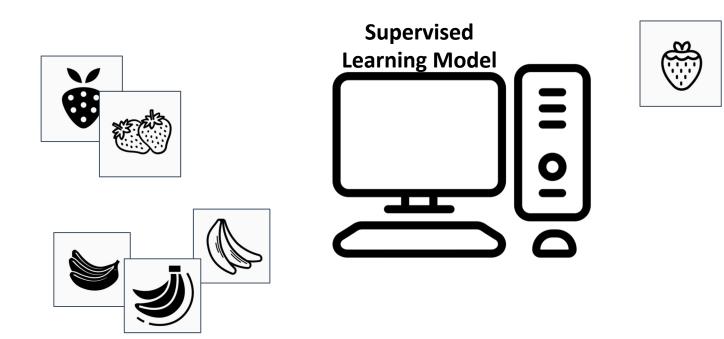
Supervised learning



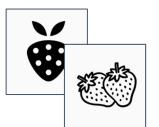
Supervised learning

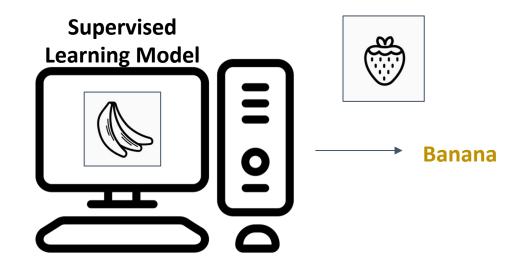


Supervised learning

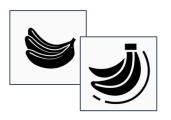


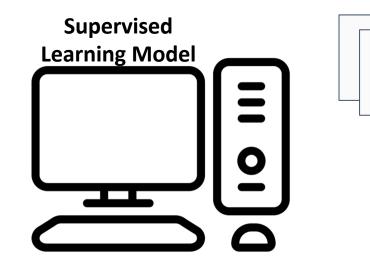
Supervised learning



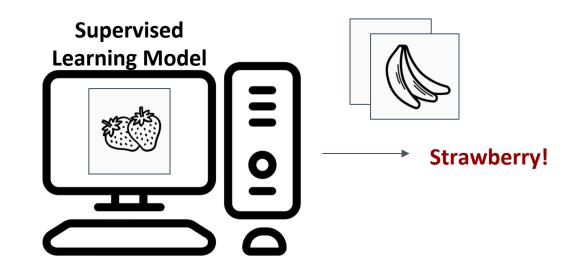


Supervised learning

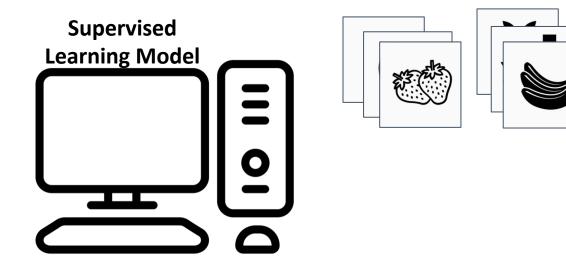




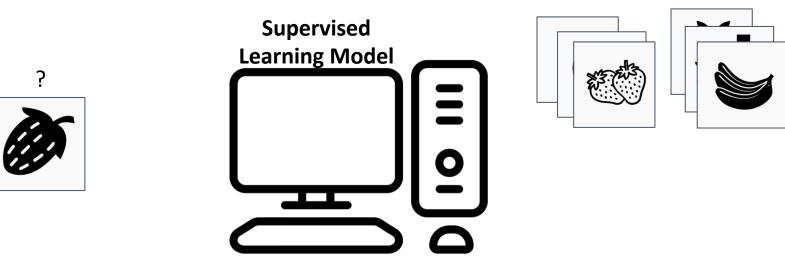
Supervised learning



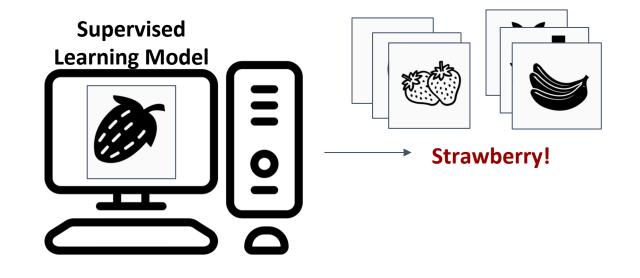
Supervised learning



Supervised learning



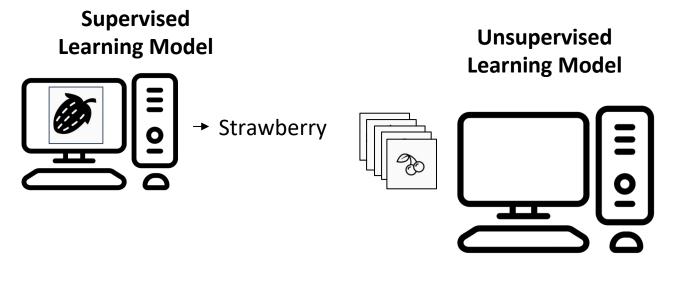
Supervised learning



Supervised learning

• Have a bunch of labelled data, want to label new data

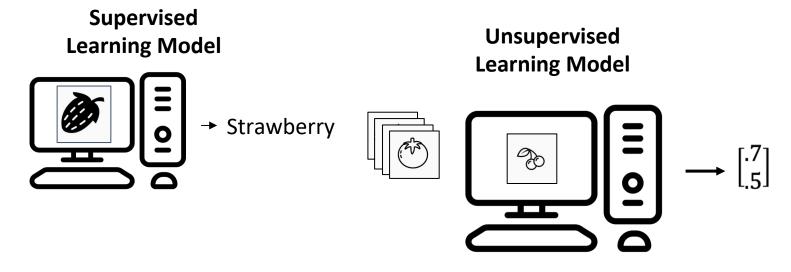
Unsupervised learning



Supervised learning

 Have a bunch of labelled data, want to label new data

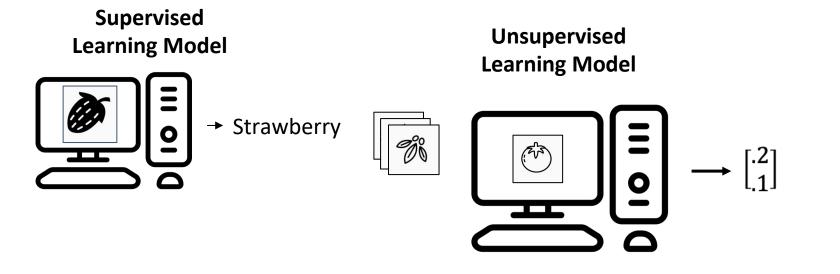
Unsupervised learning



Supervised learning

 Have a bunch of labelled data, want to label new data

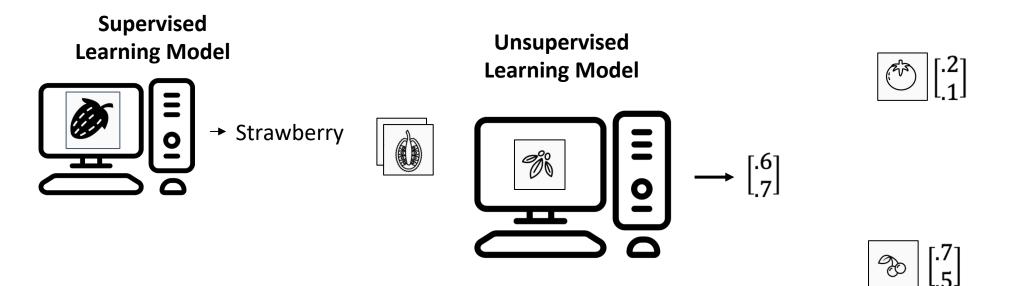
Unsupervised learning



Supervised learning

 Have a bunch of labelled data, want to label new data

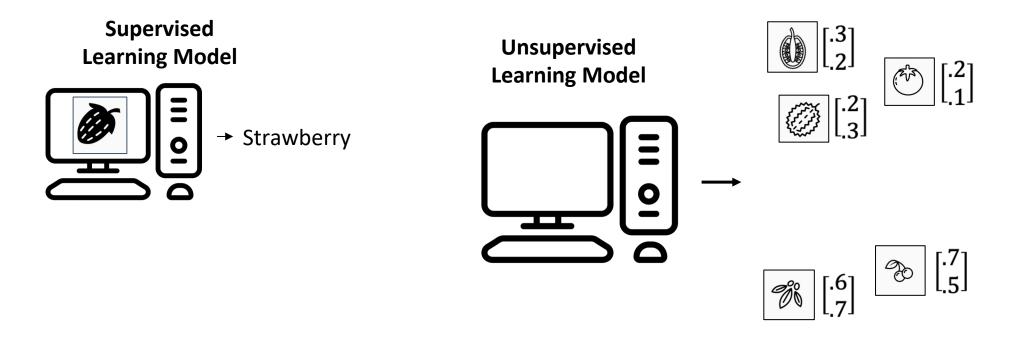
Unsupervised learning



Supervised learning

 Have a bunch of labelled data, want to label new data

Unsupervised learning

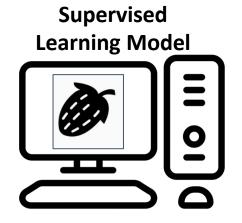


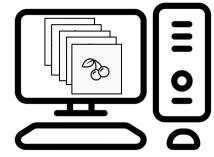
Supervised learning

- Have a bunch of labelled data, want to label new data
- Learn a function $f(X) \rightarrow Y$ where all values of Y are known for some samples of X

Unsupervised learning

- Have a bunch of unlabeled data, want to organize it
- Learn an embedding $f(X) \rightarrow Y, X \in \mathbb{R}^n, Y \in \mathbb{R}^m, n \gg m$
- Lower dimensional, easier to interpret (e.g. as clusters)

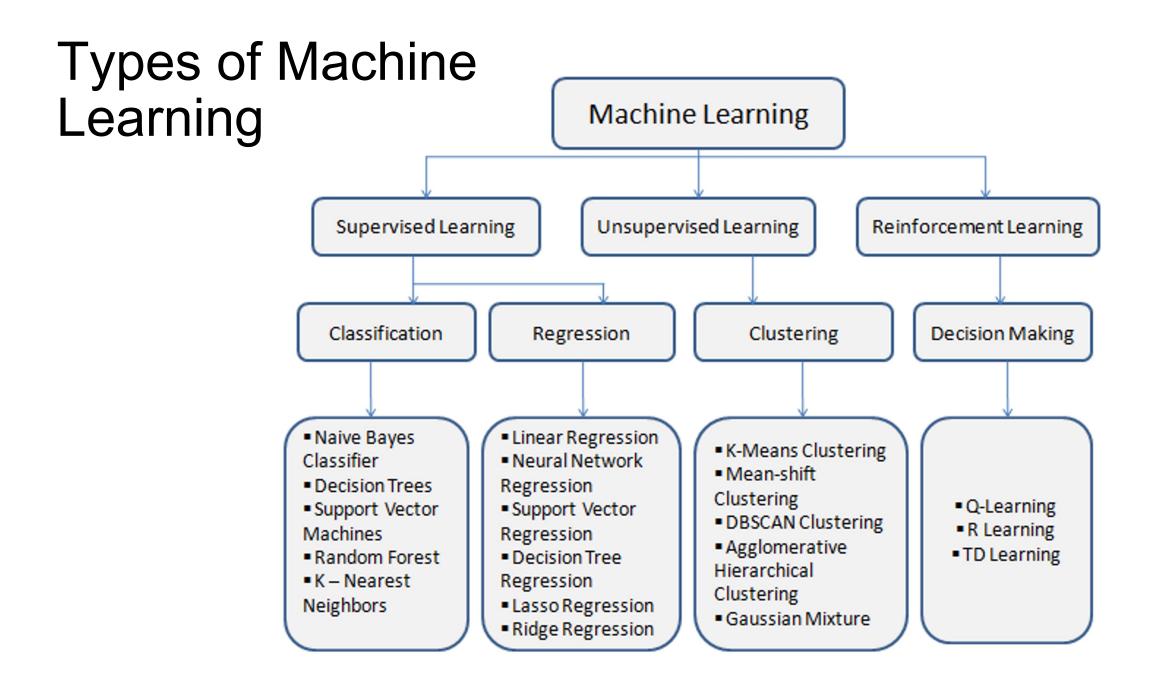




Learning algorithms

"A computer program is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**."

Tasks (T)	Performance (P)	Experience (E)
Transcription Machine Translation Classification	Accuracy rate	Supervised Learning
Anomaly detection Synthesis and sampling :	Adjusted R ² RMSE/MSE/MAE	Unsupervised Learning
Regression		Reinforcement Learning



Putting these frameworks in perspective

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples
- Supervised Learning (icing)
 - The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - ▶ 10→10,000 bits per sample
- Unsupervised/Predictive Learning (cake)
 - The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - Millions of bits per sample

(Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

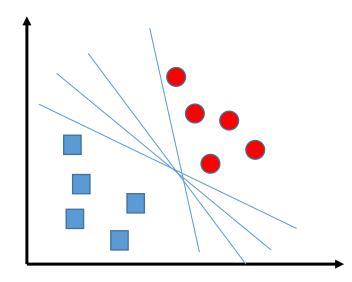
Original LeCun cake analogy slide presented at NIPS 2016

Time for a little quiz!

https://tinyurl.com/GeoComp2024

Decision Boundaries

Find a hyperplane in an N-dimensional space that distinctly classifies the data points.

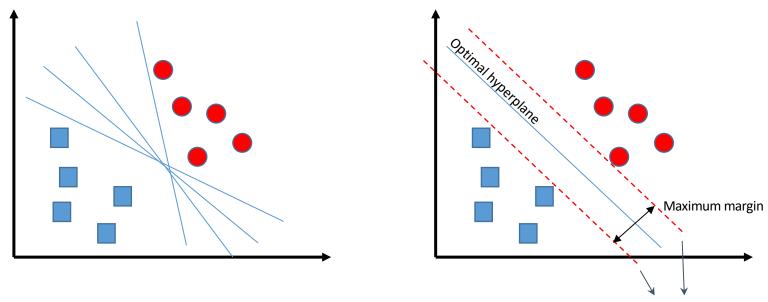


What is the correct decision boundary for this problem?

https://tinyurl.com/GeoComp2024

Support Vector Machine

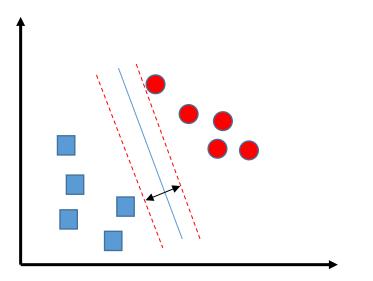
Find the optimal hyperplane in an N-dimensional space that distinctly classifies the data points.



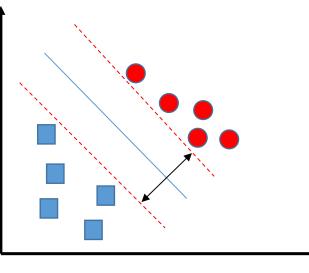
Supporting vectors

Support Vector Machine

Maximize the margin of the classifier

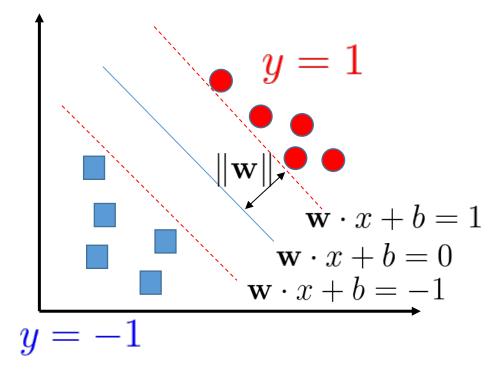


Small margin



Large margin

Support Vector Machine



Hyperplane equation: $f(x) = \mathbf{w} \cdot x + b$

Distance (D) from a point to the hyperplane

$$D = \frac{|\mathbf{w} \cdot x + b|}{\|\mathbf{w}\|}$$
 Minimize the weights, increase distance

Classification task

$$\begin{cases} wx_i + b \ge +1 & \text{when } y_i = +1 \\ wx_i + b \le -1 & \text{when } y_i = -1, \end{cases}$$

SVM Optimization

Hinge loss function

$$c(x, y, f(x)) = \begin{cases} 0, & \text{if } y * f(x) \ge 1\\ 1 - y * f(x), & \text{else} \end{cases}$$

Loss function for the SVM

$$min_w \lambda \parallel w \parallel^2 + \sum_{i=1}^n (1 - y_i \langle x_i, w \rangle)_+$$

Updating the weights:

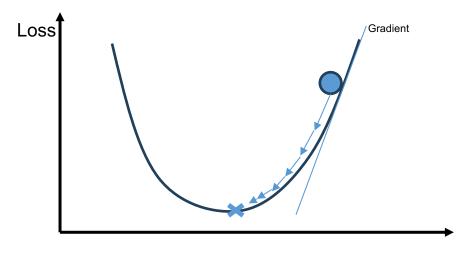
No misclassification $w = w - lpha \cdot (2\lambda w)$

Misclassification $w = w + lpha \cdot (y_i \cdot x_i - 2\lambda w)$

Gradients

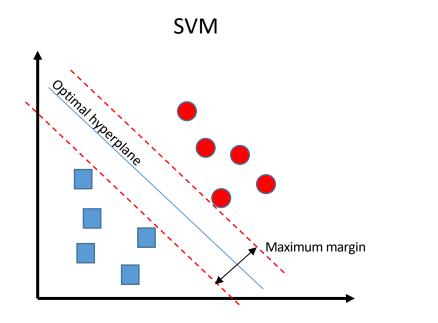
$$\frac{\delta}{\delta w_k} \lambda \parallel w \parallel^2 = 2\lambda w_k$$

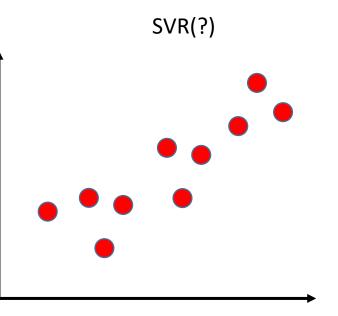
$$\frac{\delta}{\delta w_k} (1 - y_i \langle x_i, w \rangle)_+ = \begin{cases} 0, & \text{if } y_i \langle x_i, w \rangle \ge 1\\ -y_i x_{ik}, & \text{else} \end{cases}$$



Support Vector Machine for Regression

How do I turn the SVM into a SVR?





SVR Optimization

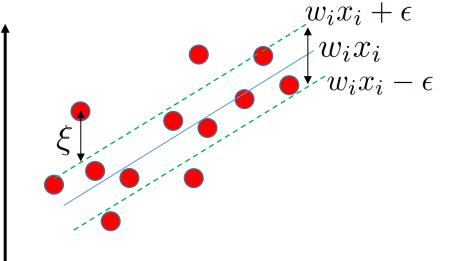
Loss

$$L(y, f(x, \mathbf{w})) = \begin{cases} 0, & |y - f(x, \mathbf{w})| \le \epsilon \\ |y - f(x, \mathbf{w})| & \text{o.w.} \end{cases}$$

Constraints

$$|y_i - w_i x_i| \leq \epsilon + |\xi_i|$$

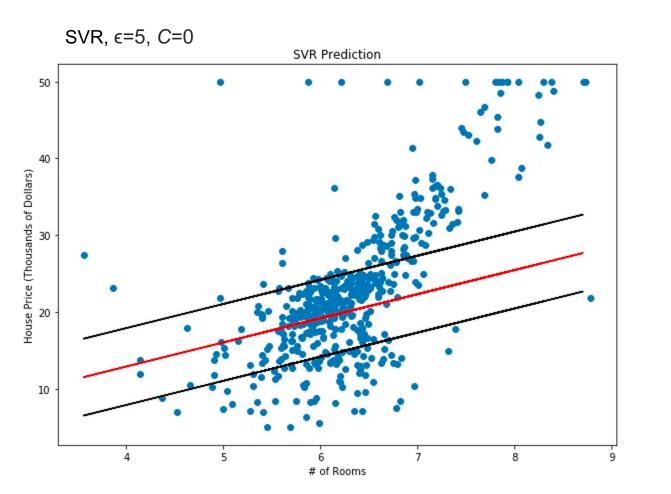
Deviation from the margin (slack)
Margin of error



Loss function for the SVR

$$\min \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n |\xi_i|$$

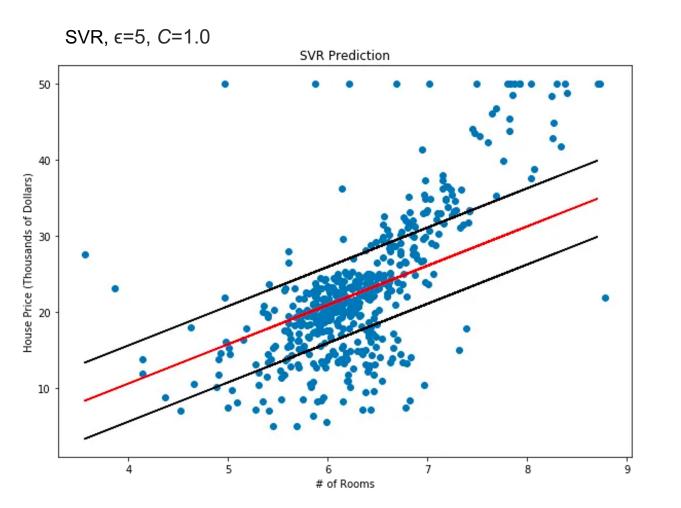
Example: House price in Boston



Conclusions:

- Some of the points still fall outside the margins.
- Consider the possibility of errors that are larger than $\varepsilon.$
- Add some slack (ie, *C*)
- Notice that in <u>sklearn</u>, the strength of the regularization is the <u>inverse</u> of C

Example: House price in Boston

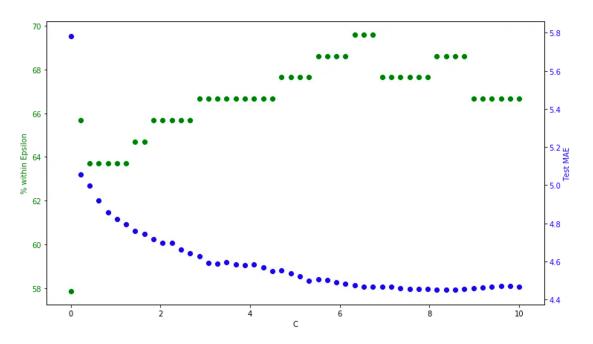


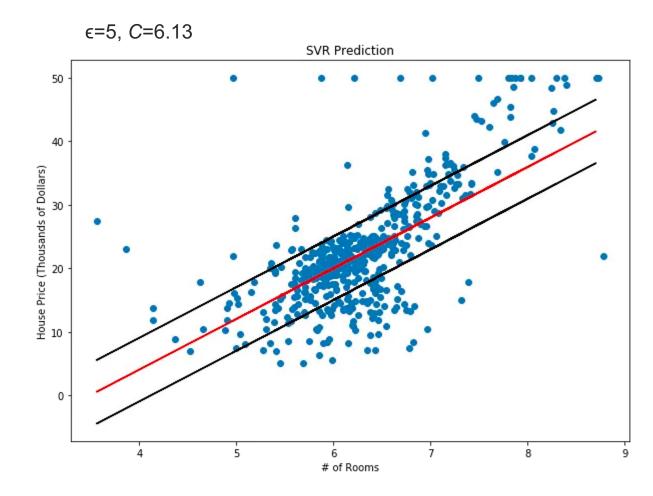
Conclusions:

- As C increases, our tolerance for points outside of ϵ also increases.
- As C approaches 0, the tolerance approaches 0 and the equation collapses into the simplified (although sometimes infeasible) one.

Example: House price in Boston

- We can use grid search over *C* to find the ideal amount of slack (more points within margin).
- Since our original objective of this model was to maximize the prediction within our margin of error (\$5,000), we want to find the value of *C* that maximizes % within Epsilon. Thus, C=6.13.

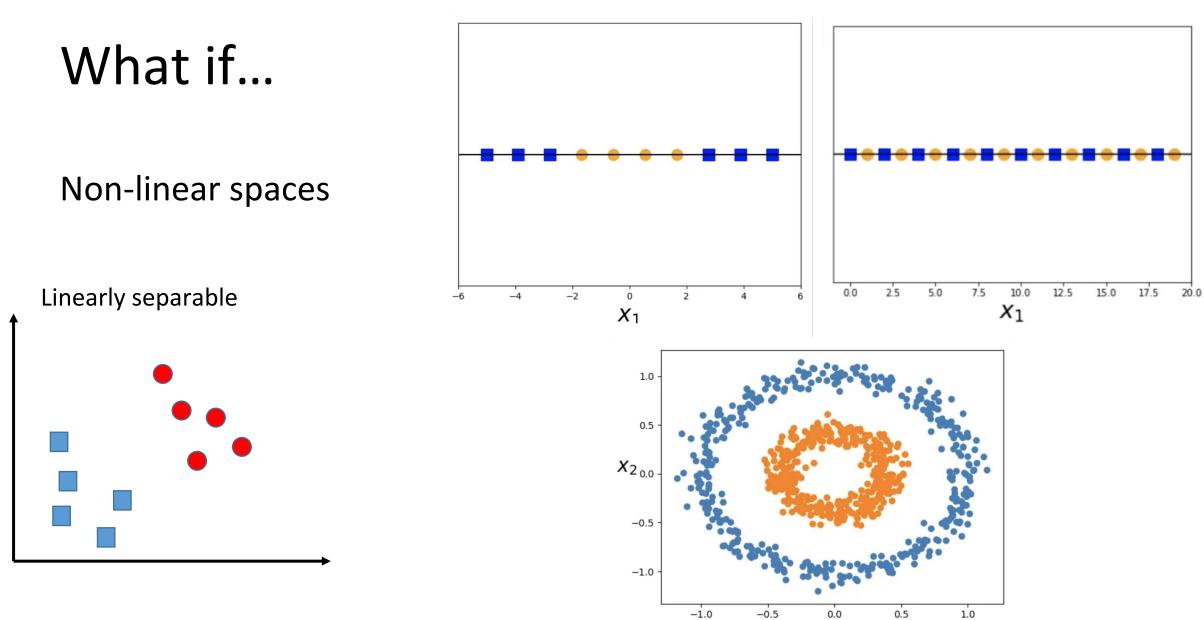




Support Vector Machine for Regression

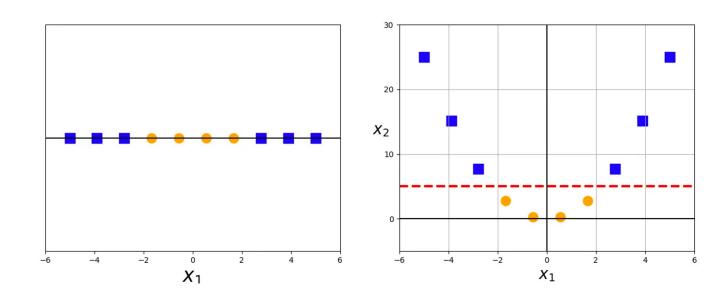
- The best fit line is the hyperplane that has the maximum number of points.
- Limitations
 - The fit time complexity of SVR is more than quadratic with the number of samples
 - SVR scales poorly with number of samples (e.g., >10k samples). For large datasets, Linear SVR
 - Underperforms in cases where the number of features for each data point exceeds the number of training data samples
 - Underperforms when the data set has more noise, i.e. target classes are overlapping.

Not linearly separable



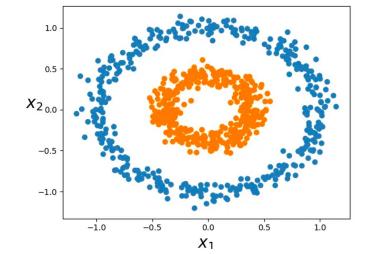
 X_1

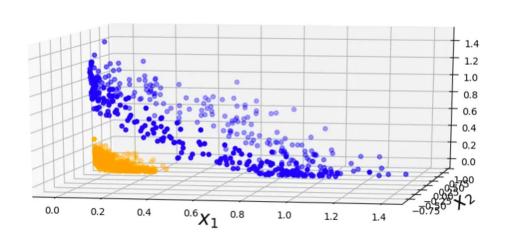
Kernel tricks



"Give me enough dimensions and I will classify the whole world".

Zucker, Steve





Additional reading material

- Support Vector Regression (<u>link</u>)
- Review of Linear Algebra terms (<u>link</u>)
- More extensive review (<u>link</u>)
 - Linear Algebra (chapter 2) and Vector Calculus (chapter 5)

Time for a quiz and tutorial!

https://tinyurl.com/GeoComp2024