

GRASS GIS

Bringing advanced geospatial technologies to the world.

Introduction to GRASS

Geographic Resources Analysis Support System

Dr. GIUSEPPE AMATULLI Yale University, School of the Environmen (YSE) Spatial Ecology (www.spatial-ecology.net)

Grass Features
 GRASS Architecture
 Command Structure
 GUI or terminal

Open Source Concept

"Free software is a matter of liberty, not price. To understand the concept, you should think of free as in *free speech*, not as in free beer."

—Richard Stallman

Programmers can read, redistribute, and modify the source code

Access to source code increases transparency and reproducibility of science

GNU Operating System open sources does not mean free !

The GNU Project was launched in 1984 to develop a complete Unixlike operating system which is free software: the GNU operating system.

The combination of GNU and Linux is the GNU/Linux operating system, now used by millions.

GRASS is Free Software/Open Source released under GNU General Public License

GRASS is an official project of the Open Source Geospatial Foundation

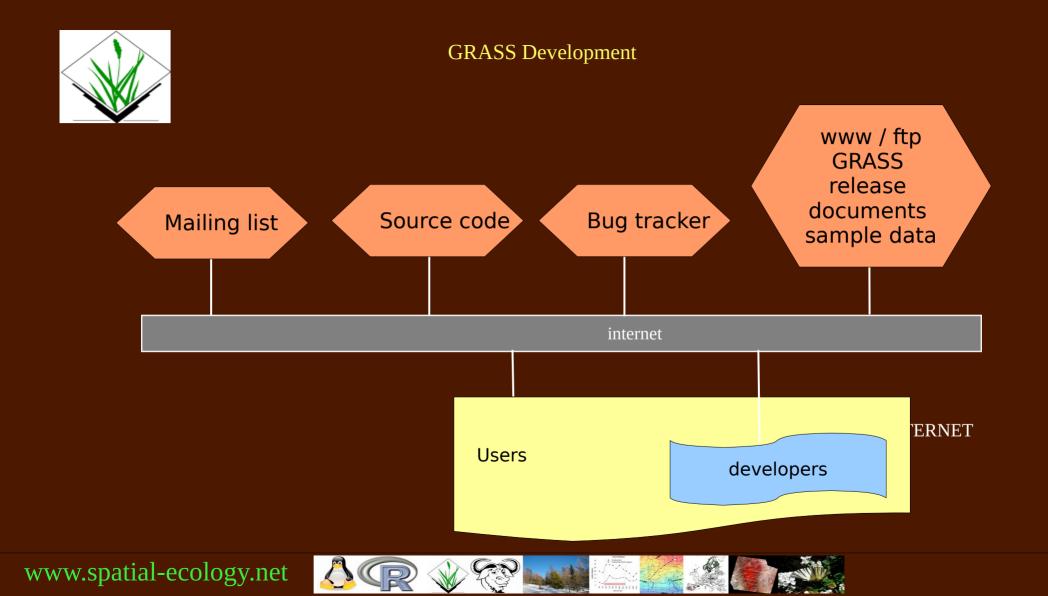
https://www.osgeo.org/

Projects ~ Resource

The Open Source Geospatial Foundation

The Open Source Geospatial Foundation supports the highest-quality open source geospatial software. Our goal is to encourage the use and collaborative development of community-led projects.

Also Support: GDAL/OGR, PostGIS, Quantum GIS, MapServer, OpenLayers



Geographic Resources Analysis Support System

- Open Source GIS, developed since 1984 (U.S. Army), since 1999 GNU GPL
- Portable code (multi-OS, 32/64bit)
- 400+ modules for management, processing, analysis and visualization (raster/image/vector)
- GIS backbone links to:

What GRASS can do?

- 2D raster analysis and 3D voxel (volumes) management
- 2D/3D vector engine with SQL based DBMS support
- Image processing modules
- Vector network analysis, Linear Referencing System
- Visualization of 2D, 3D maps and volumes
- Interoperable with standard raster and vector formats
- Works on GNU/Linux, Mac OS X, MS-Windows and other POSIX compliant platforms
- Modular architecture and scripting capabilities for batch processing

GRASS Architecture

~/ost4sem/grassdb GRASS DBASE

/europe LOCATION PROJECT(>8.4)

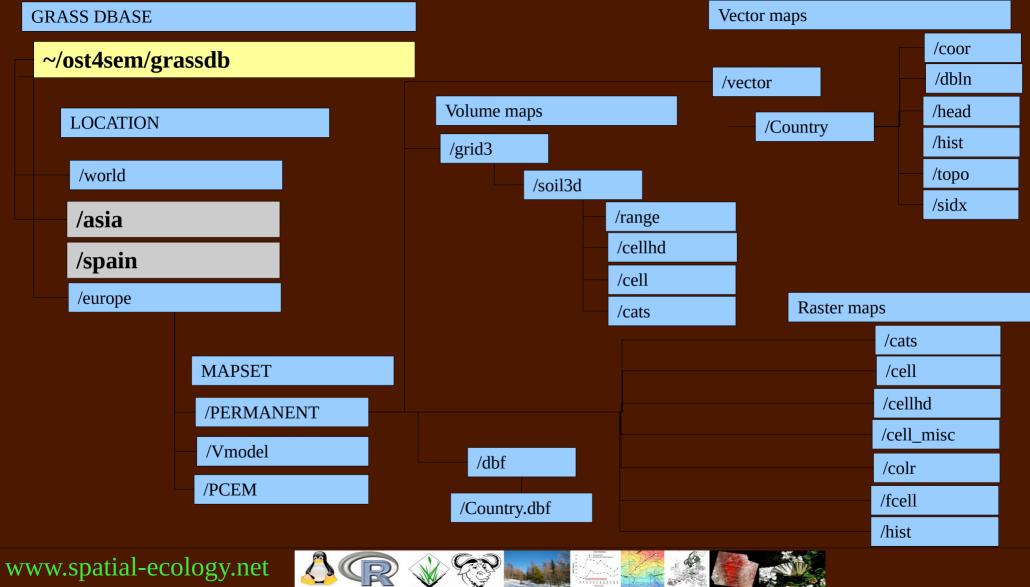
/PERMANENT /Vmodel /PCEM MAPSET

GISDBASE

GRASS data are stored in a directory referred to as GISDBASE. This directory has to be created with mkdir or a file manager, before starting to work with GRASS. Within this DATABASE, the projects are organized by project areas stored in subdirectories called LOCATIONs.

LOCATION

Defined by its coordinate system, map projection and geographical boundaries. The subdirectories and files defining a LOCATION are created automatically when GRASS is started the first time with a new LOCATION. Every location has a PERMANENT MAPSET sub-directory which stores some basic information about the whole location.


MAPSET

Organize maps by theme/geography/projec/etc within MAPSETs. Every GRASS session runs in one MAPSET at a time. A LOCATION can have many MAPSETs.

A Part

	Category values (e.g. color or temperature values) and attributes (classes with caption) of the individual		
	raster maps		
cell/	Individual raster maps		
cellhd/	Header rows of the individual raster maps		
cell_misc / Statistical data of the individual raster maps			
colr/	Color information of the individual raster maps		
dbf/	Contains the internal vector attributes in DBASE		
	format		
fcell/	Raster maps with floating point numbers		
hist/	Developing history of the individual raster maps		
vector/	Contains the individual vector data (geometry,		
	topology, etc.)		
WIND	Data of the current REGION and the MAPSET		
www.enatial_ecolo			

www.spatial-ecologprojed 🖉 🕼 🐨 🖉 🖉 🖉 🖉

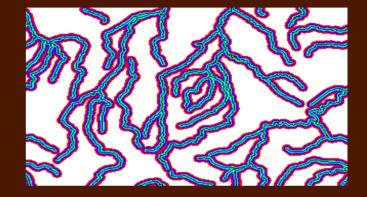
Grass Commands

prefix	function class	type of command	example
g.*	general	general data management	g.rename: renames map
d.*	display	graphical output	d.rast: display raster map d.vect: display vector map
r.*	raster	raster processing	r.mapcalc: map algebra r.univar: univariate statistics
v.*	vector	vector processing	v.clean: topological cleaning
i.*	imagery	imagery processing	<i>i.pca: Principal Components Analysis on imagery group</i>
r3.*	voxel	3D raster processing	r3.stats: Voxel statistics
db.*	database	database management	db.select: select value(s) from table
ps.*	postscript	map creation in PostScript format	ps.map: PostScript map creation

Grass syntax

SYNOPSIS Command [flags or options] parameter [flags]

Grass syntax

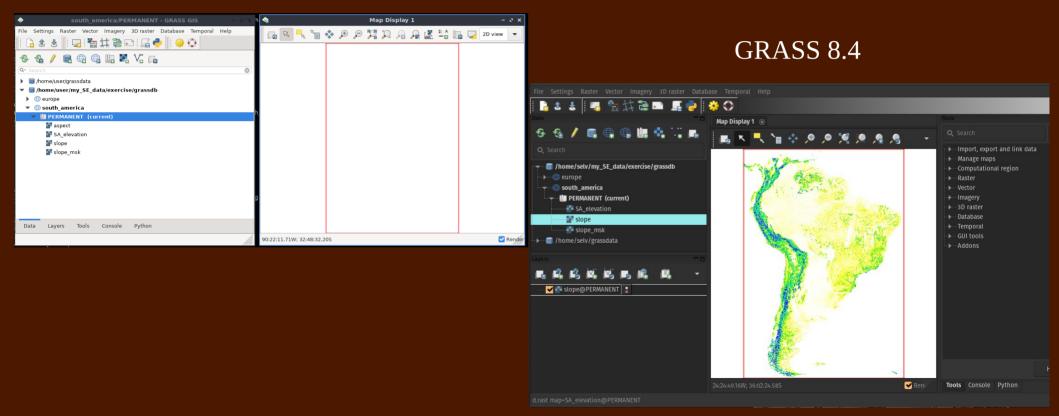

Command [flags or options] parameter [flags]

Example:

r.buffer - Creates a raster map layer showing buffer zones surrounding cells that contain non-NULL category values.

r.buffer [-zq] input=name output=name distances=float[,float,...] [units=string]

r.buffer -z input=roads output=roads.buf distances=100,200,300,400,500 units=kilometers --overwrite

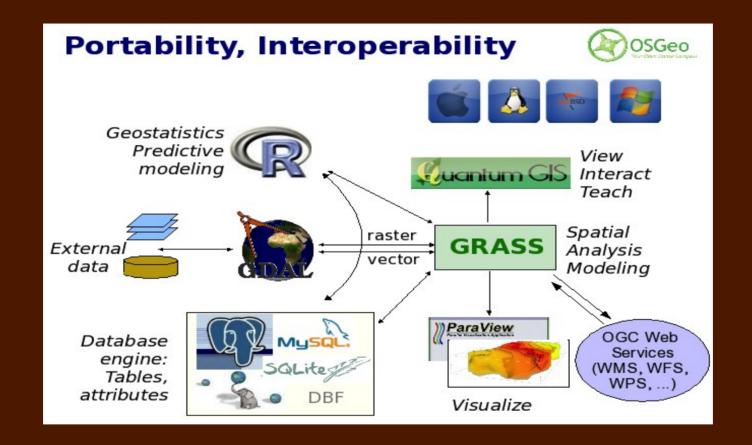


GRASS Graphical User Interface

GRASS 8.3

Command line

user@osgeolive:~\$ grass --text my_SE_data/exercise/grassdb/south_america/PERMANENT/
Starting GRASS GIS...
Cleaning up temporary files...


Welcome to GRASS GIS 8.2.1 GRASS GIS homepage: This version running through: Help is available with the command: See the licence terms with: See citation options with: Start the GUI with: When ready to quit enter:

https://grass.osgeo.org
Bash Shell (/bin/bash)
g.manual -i
g.version -c
g.version -x
g.gui wxpython
exit

To run a command as administrator (user "root"), use "sudo <command>". See "man sudo_root" for details.

GRASS south_america/PERMANENT:~ > GRASS south_america/PERMANENT:~ >

Hands on GRASS

http://spatial-ecology.net/ GRASS – GIS section

