
Neural Nets & Convolutional 
Neural Networks

Antonio Fonseca 



Agenda

1) Feedforward Neural Networks
• The limitations of Perceptrons
• Multi-layer Perceptron
• Training: the forward and back-propagation
• Debugging tips
• Tutorial: Neural Nets for the tree height dataset 

2) Convolutional Neural Networks
● Spatial locality structure
● Kernels, padding, pooling
● Classification tasks
● Saliency Analysis
● Tutorial: data batching, classification of satellite images, WandB



Perceptron: Threshold Logic



Activation functions



Optimizers (pt1)

Gradient

Stochastic gradient descent (SGD)



Optimizers

Stochastic gradient descent (SGD)

Watch out for local minimal areas



Optimizers



Optimizers

Stochastic gradient descent (SGD)

Local Minima

Multiple samples



Optimizers

Stochastic gradient descent with momentum (SGD+Momentum)

SGD+Momentum

SGD



Optimizers

Hard to pick right hyperparameters
- Small learning rate: long convergence time
- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter 
- Learning rate might decrease too fast
- Might not converge



Optimizers

RMSprop: decaying average of the past squared gradients

Exponentially decaying average

Adadelta



Optimizers

ADAM: decaying average of the past gradients and its square
RMSprop / Adadelta



Which optimizer is the best?



Multi-layer 
Perceptron



Perceptron

Limitations of the Perceptron





Try it here

Let’s play with it!

http://playground.tensorflow.org/


• Sometimes called multi-layer perceptron (MLP)
• Output from one layer is used as input for the next (Feedforward network)

Architecture of Neural Networks

But how do we train it? 



Forward Propagation

• Store weights and biases as matrices
• Suppose we are considering the weights from the second (hidden) 

layer to the third (output) layer 
• w is the weight matrix with wij the weight for the connection between the ith 

neuron in the second layer and the jth neuron in the third layer 
• b is the vector of biases in the third layer 
• a is the vector of activations (output) of 
the 2nd layer 
• a' is the vector of activations (output) of 
the third layer



Backpropagation

(1)

(2)



Extra Regularization for Neural Nets

Dropout: accuracy in the absence of certain information
• Prevent dependence on any one (or any small combination) of neurons



Capacity, Overfitting and Underfitting

1) Make training error small
2) Make the gap between training and test error small

Capacity (fitting ability)

Low capacity High capacity



Time for a quiz and tutorial!

https://tinyurl.com/GeoComp2024



Back to the code 

When people want to use Machine Learning without math
Open: - 
FeedForward_Networks_Class4.ipynb



1. In each epoch, randomly shuffle the training data
2. Partition the shuffled training data into mini-batches
3. For each mini-batch, apply a single step of gradient 

descent
• Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs

How training works



• What can we do?
• Should we change the learning rate?
• Should we initialize differently?
• Do we need more training data?
• Should we change the architecture?
• Should we run for more epochs?
• Are the features relevant for the problem?

• Debugging is an art
• We’ll develop good heuristics for choosing good architectures and hyper 

parameters

Debugging a neural network



Extra readings

Deep Learning book:
- Chapter 5.9: Intro to Stochastic Gradient Descent (SGD)
- Chapter 6: Multilayer perceptrons
- Chapter 6.2.2: Output Units (Activation functions)
- Chapter 6.5: Back-Propagation
- Chapter 8.3: Basic Algorithms (Optimizers)

https://www.deeplearningbook.org/


Convolutional 
Neural Networks



Images are a series of Pixel Values
Grayscale images:
0=Black 
255 = White

Spatial locality structure 



Handling images with Neural Networks

Works well for simple images, but fails when there are more complex patterns in the image



Local receptive fields

Image taken from Michael Neilsen’s book “Neural Networks and Deep Learning”

Make connections in small, localized regions of the input image



Local receptive fields

Image taken from Michael Neilsen’s book “Neural Networks and Deep Learning”

Slide the local receptive field over by one (or more) pixel and repeat



The convolution operation

1. Pointwise multiply
2. Add results
3. Translate filter

Filter/
Feature detector 

Image



Filters 
Original Image 



Stride

Stride 1

Stride 2



CNN over the 
image channels
• Input: 𝑊×𝐻×𝐷
• Requires four 

hyperparameters:
• Number of filters 𝐾,
• their spatial extent 𝐹,
• the stride 𝑆,
• the amount of zero padding 𝑃

• Output: 𝑊2×𝐻2×𝐷2
where: 
• 𝑊2=(𝑊−𝐹+2𝑃)/𝑆+1
• 𝐻2=(𝐻−𝐹+2𝑃)/𝑆+1
• 𝐷2=K



Kernels



Pooling



Pooling layers

• Intuition: the exact location of a feature isn’t as important as its rough 
location 
• Helps prevent overfitting

• Reduces the number of parameters needed in later layers 
• L₂ pooling is also common (L₂ norm)



• Convolutional layers detected features
• Pooling layers reduced complexity
• Now we have a set of feature maps
• Can combine them nonlinearly to classify

Fully connected layer to combine



Image Classification with CNN

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as probability of image belonging to a particular class



CNN and brain architecture

Brain “inspired” model

Hubel and Wiesel, 1959-1968 Fukushima, 1980



Slide from Fei-Fei Li, Standford lecture











Time for a quiz and tutorial!

https://tinyurl.com/GeoComp2024


