SPATIAL ECOLOGY

Neural Nets & Convolutional
Neural Networks

Antonio Fonseca

Agenda

1) Feedforward Neural Networks

® The limitations of Perceptrons

®* Multi-layer Perceptron

® Training: the forward and back-propagation

®* Debugging tips

® Tutorial: Neural Nets for the tree height dataset

2) Convolutional Neural Networks

o Spatial locality structure

o Kernels, padding, pooling

o Classification tasks

o Saliency Analysis

o Tutorial: data batching, classification of satellite images, WandB

Perceptron: Threshold Logic

0 if yw ' f(x) > 0
—yw f(x) ifyw' f(x) <0

Lperc (x,9) = {

Bias
b

T Activation
/\ function Output
Z - f > Y

Weights

1 o—» W1

Inputs ¢ T2 o—— W2

Activation functions

Sigmoid 1 Leaky ReLU)
_ 1 max (0.1, x)
O'(CII) T 14e—=
tanh Maxout
tanh(z) . o max(w{ x + by, w3 z + by)
RelLU / ELU ._/
T x>0
maX(O7 .CU) ~) {a(e"’ 1) z<0 - - o

Optimizers (pt1)

Gradient

A, — _ OE
Wi =T awk Error

. -‘ .‘ ’. ,‘.l_ "] | " ; ‘. .‘ j)
aWk W] Yy

Wit = Wi + Awy

W,

Stochastic gradient descent (SGD)

Optimizers

Hyperparameters
* Learning rate ()

0E

Wit = Wi + Awy

Stochastic gradient descent (SGD)

Optimizers

Optimizers

Hyperparameters

* Learning rate (a)

0E
AWk = —aa—Wk

d (1 . 5
= EZ(W Xi = yi);
i

Wiy1 = Wi + Awy

Stochastic gradient descent (SGD)

w

Local Minima

Multiple samples

Optimizers

Hyperparameters
* Learning rate («) _10
* Momentum (f) —20

—30 - -

. —-30 —20 —10 0 10 20
% =v a— wX; —
i+1 ﬂ aWk Z(YL SGD

SGD+Momentum

Stochastic gradient descent with momentum (SGD+Momentum)

Optimizers

Hard to pick right hyperparameters
- Small learning rate: long convergence time
- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter

0E) : :
Awy, = —a t _ —aV, E(w,) Legrnlng rate might decrease too fast
’ OWy ¢ - Might not converge

gei = MwEWe) I “
Wep1i = Wei — :
t+1,1 1 Gt‘i T e 61

Ger1i=Gei +96i O Gei

Optimizers

RMSprop: decaying average of the past squared gradients

Adadelta
Elg?]; = VE[9%]i—1+(1 —y) g} E[AL]e = YE[AL le—1+(1 =)AL
Exponentially decaying average A, = VE[AZ] + € g
t m t
oF,
Awyr = —a MWyt = —aV,E(wy) = —agy,

9ei = hb(Wei)) Vo = W~ =01
, ’ t+1,i ti gt,l
Gt,i+6

Gey1i = VG + (1 —¥)9e:i O 9t

Optimizers

ADAM: decaying average of the past gradients and its square

RMSprop / Adadelta

9ei = VwEWe;) D, = n -
Ger1,i = VGei + (1 —¥)Gei O Gt - ve = Pave—1 + (1= B2)gi — P2

my = fime_q1 + (1 —B1)9:
R me
mt =

Wiv1,i = Wei —

N\

D+ €

Optimizer Comparison

= Gradient Descent

o R | — Momentum
= SGD with Momentum TR we NEStErOV
AdaGrad 7 wese AdaGrad
QARG o
RMSprop AR ,,,,,,z,,;’,,/, AdaDelta
QALIRIALILY ~~ RMS Prop
Adam RLIRLIALILIALY,
y ?,‘_y::‘:l'.'l: — Adam

-15 -1.00

Which optimizer is the best?

Multi-layer
Perceptron

Limitations of the Perceptron

I, out

— — = S | -

- lo|lOo|©O

out

o

b -h o o -—
-t oO|l=]l0O
—_ o —_ =
.//m
A 4

Perceptron

sigmoid

. sigmoid
o y.

._-_--_--__----__---- .

sigmoid

hi: = ho:

sigmoid + polynomial transform

Let’s play with it!

Tinker With a Neural Network Right Here in Your Browser.

Dont Worry, You Can't Break It. We Promise.

\‘) Epoch Learning rate Activation Regularization Regularization rate Problem type
>
000,352 0.03 Tanh v None v 0 Classification

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.153
you want to use? you want to feed in?) @ Y — Training loss 0.181
e 2 neurons 3 neurons
5 °
X1 D — * Jee 00
L) . ®
50 ARONS
-0 o
2 7 o o o e)
Ratio of training to . ":'.' o® %
test data: 50% . 7
O wéights sh ... Q .'. 3
3 o o
by o o oo o':
of C)
Noise: 10 o 0% o A
—° 3 .
O ° . a0 °
o 00% < 1 O
Batch size: 10 e o
—e
0
REGENERATE

Colors shows

Try it h e re X data, neuron and '1 (!) -1

weight values

[] Showtestdata [] Discretize output

http://playground.tensorflow.org/

Architecture of Neural Networks

input layer {

But how do we train it?

* Sometimes called multi-layer perceptron (MLP)

e Output from one layer is used as input for the next (Feedforward network)

Forward Propagation

* Store weights and biases as matrices

* Suppose we are considering the weights from the second (hidden)
layer to the third (output) layer

* wis the weight matrix with w;; the weight for the connection between the ith
neuron in the second layer and the jt" neuron in the third layer

* bis the vector of biases in the third layer

* g is the vector of activations (output) of

the 2nd layer

* a'is the vector of activations (output) of«

the third layer

a' =o(wa+b)

1 2
=5). (@ =)
i

cost E = E(a")

Backpropagation

1. Input z: Set the corresponding activation a' for the input

layer.
2. Feedforward: Foreach ! = 2,3,...,L compute
z! = wla"! + b! and a! = o(2}).
Zj _ZW all+bl a—a 2w]la51+b =a(z})
3. Output error §*: Compute the vector 6% = V,C ® o'(2%).
4. Backpropagate the error: Foreach! =L —1,L —2,...,2 SL = 0E OE dal OE (L)
L = o(z
compute ol = ((,wlﬂ)To'Hl) ® 0’(zl). J asz aa aZ aa]L (1)
5. Output: The gradient of the cost function is given by . OE OE dz!*! 9zt -
o¢c ac 0; = — = 6.+
o, = = a; '0! and =+ o= = 4}. J az} oz az-l 62} i
a(z Wl+1 l + bl+1) l

+1 _ [+1 5141 /(1
J; : 2
O OF 0ald(w'a! 7 Zw o (zj) (2)

1 1
Bwji aai azj Bwji

Extra Regularization for Neural Nets

Dropout: accuracy in the absence of certain information

* Prevent dependence on any one (or any small combination) of neurons

pw
Present with Always

probability p present

(a) At training time (b) At test time

(a) Standard Neural Net (b) After applying dropout.

Capacity, Overfitting and Underfitting

1) Make training error small
2) Make the gap between training and test error small

Capacity (fitting ability)

1 2 9
Low capacity «—— y = 2 wixi y = Z Wixi y = z Wl-xi — High capacity
i i i

Underfitting Appropriate capacity Overfitting

Time for a quiz and tutorial!

[=] 1y [m]

https://tinyurl.com/GeoComp2024

Back to the code

Open: -
FeedForward Networks Class4.ipynb] . .
When people want to use Machine Learning without math

How training works

In each epoch, randomly shuffle the training data
Partition the shuffled training data into mini-batches

For each mini-batch, apply a single step of gradient
descent
* Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs

Debugging a neural network

* What can we do?
e Should we change the learning rate?
e Should we initialize differently?
* Do we need more training data?
* Should we change the architecture?
* Should we run for more epochs?
* Are the features relevant for the problem?

* Debugging is an art

 We'll develop good heuristics for choosing good architectures and hyper
parameters

Extra readings

Deep Learning book:

Chapter 5.9: Intro to Stochastic Gradient Descent (SGD)
hapter 6: Multilayer perceptrons

hapter 6.2.2: Output Units (Activation functions)
napter 6.5: Back-Propagation

napter 8.3: Basic Algorithms (Optimizers)

C
C
C
C

https://www.deeplearningbook.org/

Convolutional
Neural Networks

Images are a series of Pixel Values

Grayscale images:
O=Black
255 = White

Spatial locality structure

Handling images with Neural Networks

input layer {

n
N
—

R IN]|OolrRr|IN|I|lO|lR |-

Works well for simple images, but fails when there are more complex patterns in the image

Local receptive fields

Make connections in small, localized regions of the input image

input neurons

00009 first hidden layer

00000 e —0)
00000~
00000

Image taken from Michael Neilsen’s book “Neural Networks and Deep Learning”

Local receptive fields

Slide the local receptive field over by one (or more) pixel and repeat

input neurons

09004 first hidden layer
00000 ——— |0
00000~

Q0000

Image taken from Michael Neilsen’s book “Neural Networks and Deep Learning”

The convolution operation

1/1(1(0/|0
oj1/1|1]0 1(0]1
Image 0/0|1/|1|1 o110
1101
ojo|1(1]|0
ofiitiojo Filter/ 1. Pointwise multiply
Feature detector 2. Add result§
3. Translate filter
1X1 1x0 1x1 0 0
oxo 1x1 1x0 1 0 4
oxl OxO 1x1 1 1
0O(0f(1(1]|0
O(1(1(0]|0
Convolved
Image

Feature

Operation Filter Convolved

Image
" 0 0 0
Filters = e
0 0 0
Original Image - g ";
-1 0 1
0 1 0
Edge detection 1 -4 1
0o 1 0
[-1 -1 -1]
-1 8 -1
[-1 =1 =1]
[0 -1 0]
Sharpen -1 5 -1
| 0 -1 0
A1l
Box blur 1
-1 1 1
(normalized) 9
|l il
G ian bl 1 S o
o | |2
aj
e 1 21

Stride

7 x 7 Input Volume 5 x 5 Output Volume

Stride 1

7 x 7 Input Volume 3 x 3 Output Volume

Stride 2

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
Over e X[:,:,0] wO0[:,:,0] wl[:,:,0 o[:,:,0]

0000 1Jo [1o 1] 0 0 2

image channels ¢.::0dd 0 e

0O 0 0 O - -1 - 5 6 -3

0O 1 0 2 of:,:,1]

. Input: WxHxD N EI BB E : :z

« Requires four o S S & TR E

hyperparameters: 1)
* Number of filters K, 0.0 0 0
 their spatial extent F, |2 |9
« the stride S, g z ? z
- the amount of zero paddingP | | | |
* Output: WoxH,%xD, 0 0 0 2
0O 0 0 O
Where: x[2,:,2] toggle movement

. W2=(W—F+2P)/S+'I 2 ‘1’ g g
° H2=(H_F+2P)/S+1 T [
_ 0 1 0 1
DZ_K 0O 1 0 2
0O 1 0 2
0O 0 0 O

Kernels

Example filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size [11x11x3], and each one is shared by the
55*55 neurons in one depth slice. Notice that the parameter sharing assumption is relatively reasonable: If detecting a
horizontal edge is important at some location in the image, it should intuitively be useful at some other location as well due to
the translationally-invariant structure of images. There is therefore no need to relearn to detect a horizontal edge at every one of

the 55*55 distinct locations in the Conv layer output volume.

Pooling

224x224x64 : _
e Single depth slice
A
pool % 11112]| 4
max pool with 2x2 filters
5167 |8 and stride 2 b 8
l I 3 | 2 NN 3 Bt
1 | 2
> o 112
hat downsampling
112 >
224 y

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this example, the
input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the
volume depth is preserved. Right: The most common downsampling operation is max, giving rise to max pooling, here shown
with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

Pooling layers

* Intuition: the exact location of a feature isn’t as important as its rough

location
* Helps prevent overfitting

* Reduces the number of parameters needed in later layers

* |, pooling is also common (L, norm)

Fully connected layer to combine

* Convolutional layers detected features
* Pooling layers reduced complexity
* Now we have a set of feature maps

------- ~ew__dog(0.01)
r cat (0.04) 4 possible outputs
I r boat (0.94)
_L l bird (0.02)

Image Classification with CNN

T

— CAR
— TRUCK
— VAN

—
?L.
e
——
——
I,
'
—
S
o
°

vLLLE PY L1
JEIRSEGEE

’ / - L
’ o [] [] — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING ratren FULY - sortmax

~

FEATURE LEARNING

CONV and POOL layers output high-level features of input
Fully connected layer uses these features for classifying input image
Express output as probability of image belonging to a particular class

e

CLASSIFICATION
eyi

Zjeyj

softmax(y;) =

CNN and brain architecture

Electrical signal
from brain

Recording electrode ——»

Visual area
/ of brain
{;m \
Q Stimulus

Hubel and Wiesel, 1959-1968

Brain “inspired” model

U
Us1 S3 Ugs
Ugq
» Usq
Uo J
input i /.
layer 1l T
contrast e
X recognition
extraction ©d9e gl
extraction ayer

Fukushima, 1980

Which pixels matter:
Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

P(elephant) = 0.95

P(elephant) = 0.75

Boat image is CCO0 public domain
Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephant image is EFS public domain
» Go-Karts image is CCO public doma
Networks”, ECCV 2014 nars Mads S ublc domah

Slide from Fei-Fei Li, Standford lecture

Which pixels matter:

Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional
Networks”, ECCV 2014

Boat image is CCO public domain

Elephant image is CCO public domain

Go-Karts image is CCO public domain

schooner

04

098

0.96

0.94

0.92

0.90

0.88

0.9

0.8

0.7

0.6

0.5

Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

Law |
¥

192 128

dense

192 128 Max
Max 128 Max pooling
pooling pooling

Lz 2048

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

o]
O
O
Q

111111

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Time for a quiz and tutorial!

[=] 1y [m]

https://tinyurl.com/GeoComp2024

