SPATIAL ECOLOGY

Intro to optimizers & Perceptron

Antonio Fonseca

Agenda

- 1) Perceptron
 - Recap
 - Hands-on tutorial
 - Optimizers
- 2) Feedforward Neural Networks
 - The limitations of Perceptrons
 - Multi-layer Perceptron
 - Training: the forward and back-propagation
 - Debugging tips

Intro to optimization

Review on Linear Regression

Task (T)

Input
$$x \in \mathbb{R}^n$$
Weights $w \in \mathbb{R}^n$

$$f(x,w) = x_1w_1 + x_2w_2 + \dots + x_nw_n$$

Dataset

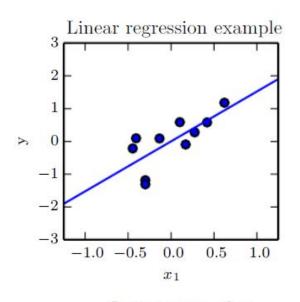
$$(X,y) = \begin{cases} (X_{train}, y_{train}) \\ (X_{test}, y_{test}) \end{cases}$$

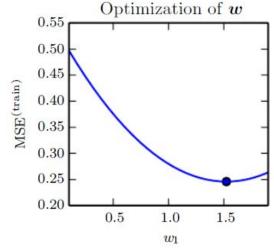
Performance (P)

$$MSE_{test} = \frac{1}{m} \sum_{i} (\hat{y}_{test} - y_{test})_{i}^{2}$$

Training

$$\nabla_{w} \left(\frac{1}{m} \sum_{i} (w^{T} X_{train} - y_{train})_{i}^{2} \right) = 0$$





Solves linear problems

Can't solve more complex problems (e.g., XOR problem)

Linear Regression Optimization

• Add an offset w_0 : $f(x; w) = w^T x + w_0$, $\mathcal{D} = \{(x_1, y_1), ... (x_n, y_n)\}$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i + \mathbf{w}_0 - \mathbf{y}_i)^2$$

$$= \arg\min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D})$$

• Set $\frac{\partial L(\mathbf{w}; \mathcal{D})}{\partial w_i} = 0$ for each i

Mean squared error loss

Rewrite:

$$(X\mathbf{w} - \mathbf{y})^{T}(X\mathbf{w} - \mathbf{y}) = (\mathbf{w}^{T}X^{T} - \mathbf{y}^{T})(X\mathbf{w} - \mathbf{y})$$

$$= \mathbf{w}^{T}X^{T}X\mathbf{w} - \mathbf{w}^{T}X^{T}\mathbf{y} - \mathbf{y}^{T}X\mathbf{w} + \mathbf{y}^{T}\mathbf{y}$$

$$= \mathbf{w}^{T}X^{T}X\mathbf{w} - 2\mathbf{w}^{T}X^{T}\mathbf{y} + \mathbf{y}^{T}\mathbf{y}.$$

$$\frac{\partial}{\partial w} \mathbf{w}^T X^T X \mathbf{w} - 2 \mathbf{w}^T X^T \mathbf{y} + \mathbf{y}^T \mathbf{y} = 0$$
$$2X^T X \mathbf{w} - 2X^T \mathbf{y} = 0$$
$$X^T X \mathbf{w} = X^T \mathbf{y}$$
$$\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$$

Regularization

• Ridge regression: penalize with L2 norm

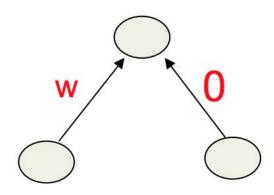
$$\mathbf{w}^* = \arg\min \sum_{i} L(f(\mathbf{x}_i; \mathbf{w}), y_i) + \lambda \sum_{j=1}^{M} w_j^2$$

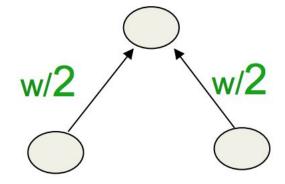
- Closed form solution exists $\mathbf{w}^* = (\lambda I + X^T X)^{-1} X^T \mathbf{y}$
- LASSO regression: penalize with L1 norm

$$\mathbf{w}^* = \arg\min \sum_{i} L(f(\mathbf{x}_i; \mathbf{w}), y_i) + \lambda \sum_{j=1}^{m} |w_j|$$

No closed form solution but still convex (optimal solution can be found)

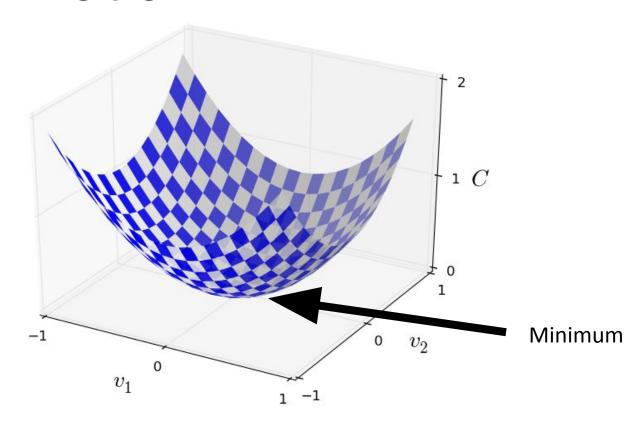
Regularization





- Prefers to share smaller weights
- Makes model smoother
- More Convex

Loss Minimization

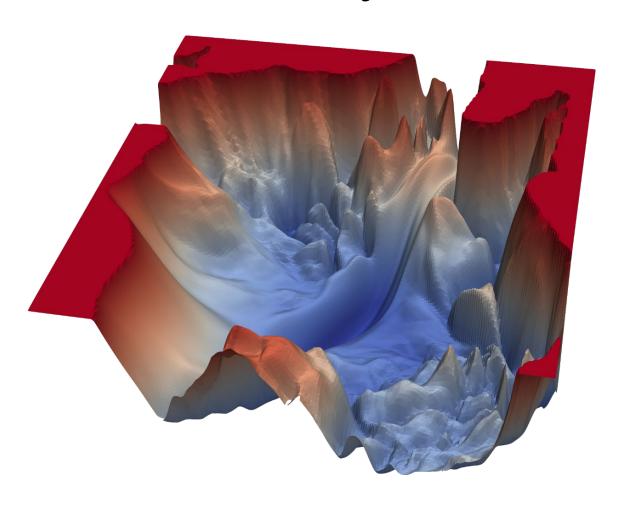


Convex loss functions can be solved by differentiation, at the point where Loss is minimum the derivative wrt to parameters should be 0!

Expectation

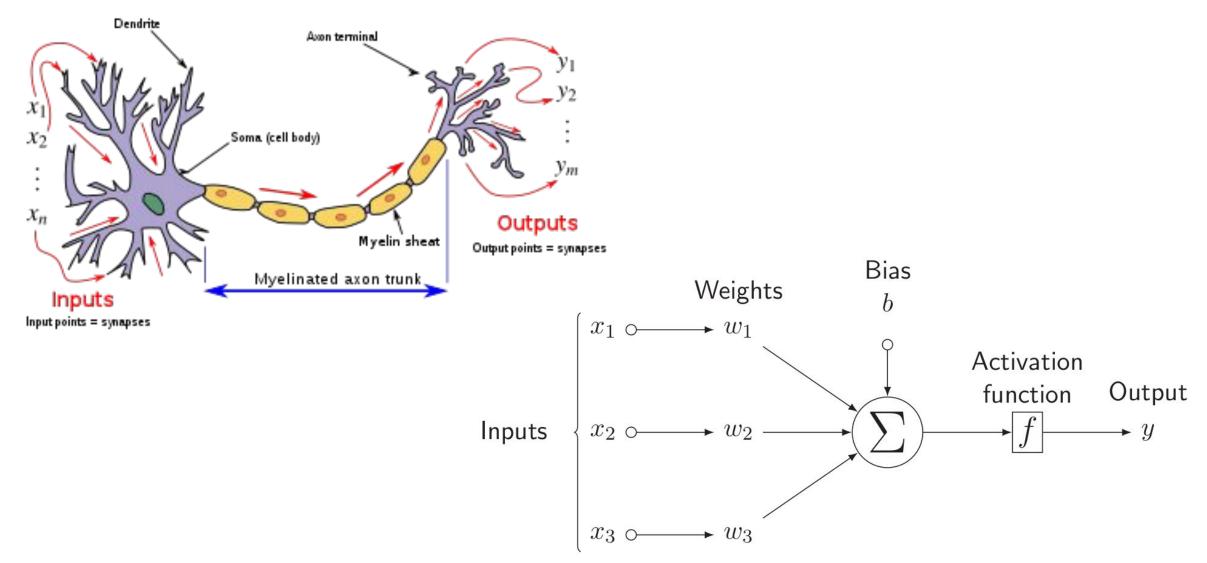
v_2 v_1

Reality



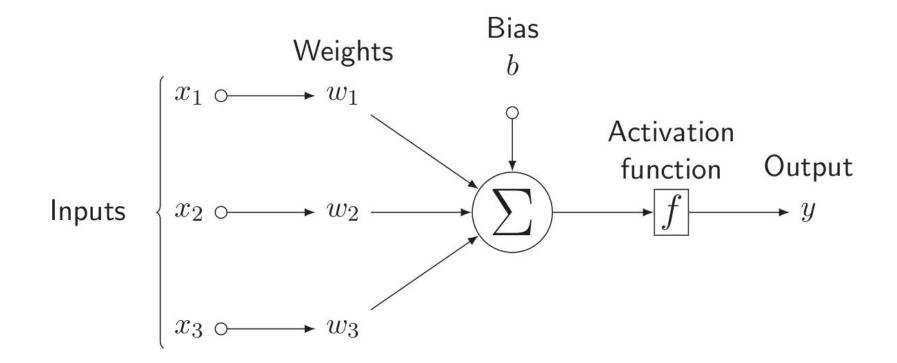
Perceptron

Perceptron: Threshold Logic



Perceptron: Threshold Logic

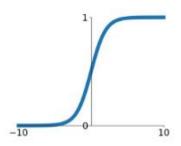
$$\mathcal{L}_{\text{perc}}(\mathbf{x}, y) = \begin{cases} 0 & \text{if } y \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}) > 0 \\ -y \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}) & \text{if } y \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}) \le 0 \end{cases}$$



Activation functions

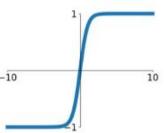
Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



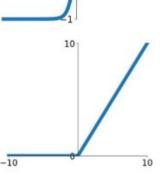
tanh

tanh(x)



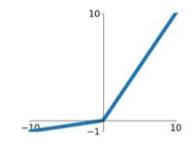
ReLU

 $\max(0,x)$



Leaky ReLU

 $\max(0.1x, x)$

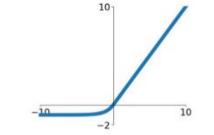


Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$



Optimizers (pt1)

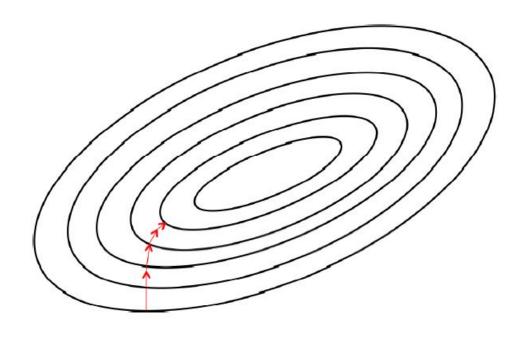
Gradient

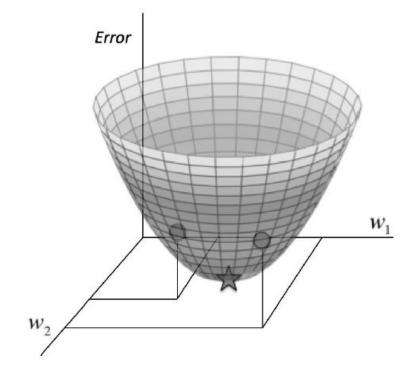
$$\Delta w_k = -\frac{\partial E}{\partial w_k}$$

$$= -\frac{\partial}{\partial w_k} \left(\frac{1}{m} \sum_i (w^T X_i - y_i)_i^2 \right)$$

$$w_{i+1} = w_i + \Delta w_k$$

Stochastic gradient descent (SGD)





Optimizers (pt1)

Hyperparameters

• Learning rate (α)

$$\Delta w_k = -\alpha \frac{\partial E}{\partial w_k}$$

$$= -\alpha \frac{\partial}{\partial w_k} \left(\frac{1}{m} \sum_i (w^T X_i - y_i)_i^2 \right)$$

$$w_{i+1} = w_i + \Delta w_k$$

Stochastic gradient descent (SGD)

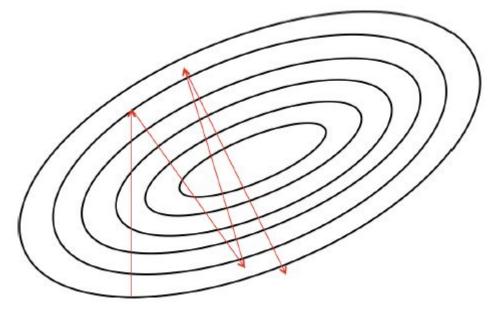
Practical test:

lr_val = [1; 0.1; 0.01]

momentum_val = 0

nesterov_val = 'False'

decay_val = 1e-6



Result of a large learning rate α

Gradient Descent

- Gradient descent refers to taking a step in the direction of the gradient (partial derivative) of a weight or bias with respect to the loss function
- Gradients are propagated backwards through the network in a process known as backpropagation
- The size of the step taken in the direction of the gradient is called the *learning rate*

Hyperparameters

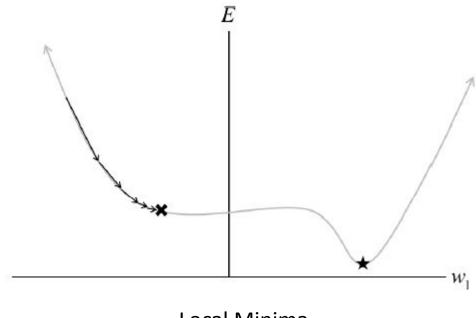
• Learning rate (α)

$$\Delta w_k = -\alpha \frac{\partial E}{\partial w_k}$$

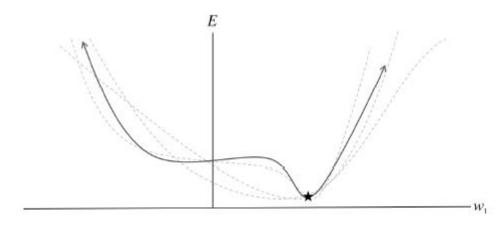
$$= -\alpha \frac{\partial}{\partial w_k} \left(\frac{1}{m} \sum_i (w^T X_i - y_i)_i^2 \right)$$

$$w_{i+1} = w_i + \Delta w_k$$

Stochastic gradient descent (SGD)



Local Minima



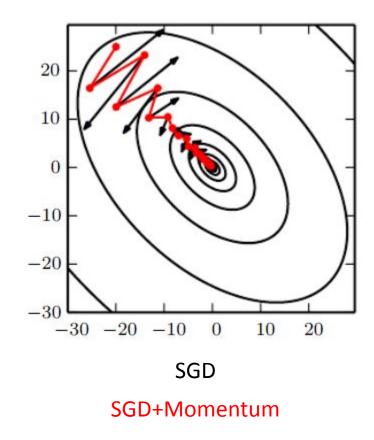
Multiple samples

Hyperparameters

- Learning rate (α)
- Momentum (β)

$$v_{i+1} = v\beta - \alpha \frac{\partial}{\partial w_k} \left(\frac{1}{m} \sum_i (w^T X_i - y_i)_i^2 \right)$$

$$w_{i+1} = w_i + v$$



Stochastic gradient descent with momentum (SGD+Momentum)

Hard to pick right hyperparameters

- Small learning rate: long convergence time
- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter

$$\Delta w_{k,t} = -\alpha \frac{\partial E_t}{\partial w_{k,t}} = -\alpha \nabla_w E(w_t)$$

- Learning rate might decrease too fast
- Might not converge

$$g_{t,i} = \nabla_{w} E(w_{t,i})$$

$$-G_{t+1,i} = G_{t,i} + g_{t,i} \odot g_{t,i}$$

$$w_{t+1,i} = w_{t,i} - \frac{\alpha}{\sqrt{G_{t,i} + \epsilon}} g_{t,i}$$

→ accumulated squared gradient

RMSprop: decaying average of the past squared gradients

Adadelta

$$E[g^2]_t = \gamma E[g^2]_{t-1} + (1-\gamma)g_t^2$$
 Exponentially decaying average

$$E[\Delta_w^2]_t = \gamma E[\Delta_w^2]_{t-1} + (1 - \gamma) \Delta_w^2$$
$$\Delta w_t = \frac{\sqrt{E[\Delta_w^2]_t + \epsilon}}{\sqrt{G_{t,i} + \epsilon}} g_t$$

$$\Delta w_{k,t} = -\alpha \frac{\partial E_t}{\partial w_{k,t}} = -\alpha \nabla_w E(w_t) = -\alpha g_{t,i}$$

$$g_{t,i} = \nabla_w E(w_{t,i})$$

$$G_{t+1,i} = \gamma G_{t,i} + (1 - \gamma) g_{t,i} \odot g_{t,i}$$

$$w_{t+1,i} = w_{t,i} - \frac{\alpha}{\sqrt{G_{t,i} + \epsilon}} g_{t,i}$$

ADAM: decaying average of the past squared gradients and momentum

RMSprop / Adadelta

$$g_{t,i} = \nabla_w E(w_{t,i})$$

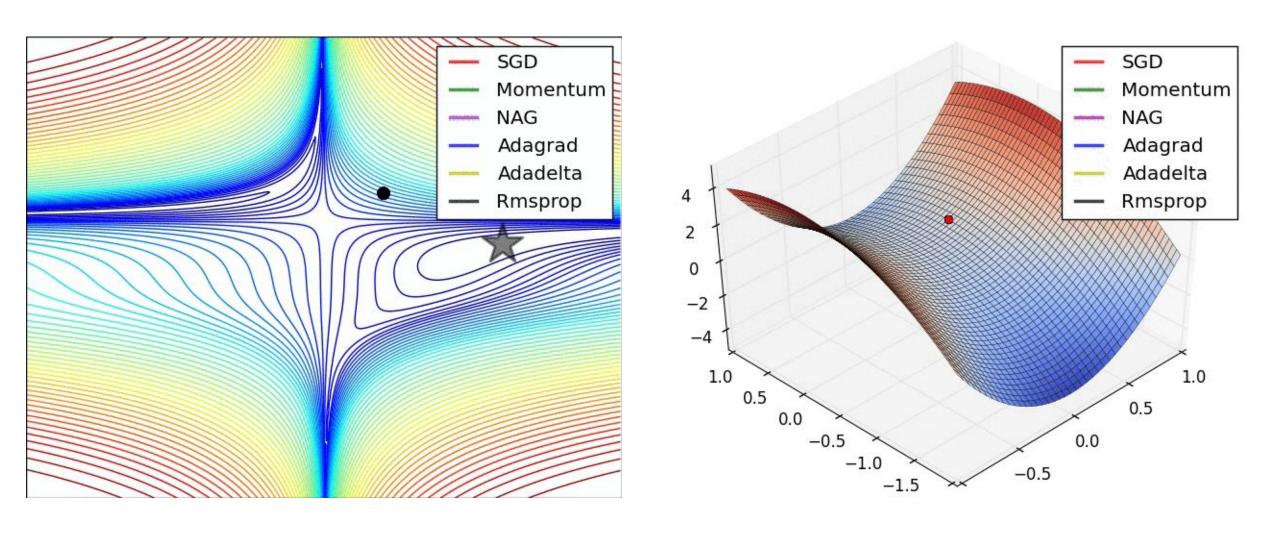
$$G_{t+1,i} = \gamma G_{t,i} + (1 - \gamma) g_{t,i} \odot g_{t,i}$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$\widehat{m}_t = \frac{m_t}{1 - \beta_1^t}$$

$$w_{t+1,i} = w_{t,i} - \frac{\alpha}{\sqrt{\widehat{v}_t} + \epsilon} \widehat{m}_t$$



Which optimizer is the best?