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Agenda
0) Preparing for the paper discussion (Class 6)

1) Perceptron 
• Intro to optimization 

• Perceptron

• Optimizers

• Hands-on tutorial

2) Feedforward Neural Networks
• The limitations of Perceptrons

• Multi-layer Perceptron

• Training: the forward and back-propagation

• Debugging tips



BYOP (Bring Your Own Paper) (Nov 19th)
1) Pick a paper related to your field that is using machine learning

• You will introduce the paper (motivation, data, etc) 

• I will explain the ML method

• Your opportunity to explore a new method

2) Send me the title of the paper and the link (must be open access) by 
next Friday!!

• The received papers will be voted

• The top 2 or 3 will be discussed



Perceptron: Threshold Logic



Perceptron: Threshold Logic



Activation functions



Optimizers (pt1)

Gradient

 

 

 

Stochastic gradient descent (SGD)



Optimizers (pt1)

 

 

 

 

 

Stochastic gradient descent (SGD)

Practical test:
lr_val = [1; 0.1; 0.01]
momentum_val = 0
nesterov_val = ‘False'
decay_val = 1e-6



Optimizers

 

 

 

Stochastic gradient descent (SGD)

 

Watch out for local minimal areas



• Gradient descent refers to taking a step in the direction of the 
gradient (partial derivative) of a weight or bias with respect to the 
loss function 

• Gradients are propagated backwards through the network in a 
process known as backpropagation

• The size of the step taken in the direction of the gradient is called the 
learning rate

Gradient Descent



Time for a quiz and tutorial!

https://tinyurl.com/geocomp2025



Optimizers



Optimizers

 

 

 

Stochastic gradient descent (SGD)

Local Minima

Multiple samples

 



Optimizers

 

 

Stochastic gradient descent with momentum (SGD+Momentum)

 SGD+Momentum

SGD



Optimizers

Hard to pick right hyperparameters

- Small learning rate: long convergence time

- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter 
 

 

 

 

- Learning rate might decrease too fast
- Might not converge

accumulated squared gradient



Optimizers

RMSprop: decaying average of the past squared gradients

 

 

 

 

 

Exponentially decaying average

 

 

Adadelta

Exponentially decaying over the weights



Optimizers

ADAM: decaying average of the past squared gradients and momentum

 

 

 

RMSprop / Adadelta

 

 

 

 



Which optimizer is the best?



Multi-layer 
Perceptron



Perceptron

Limitations of the Perceptron





Try it here

Let’s play with it!

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=10&networkShape=2,3&seed=0.68304&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&batchSize_hide=false


• Sometimes called multi-layer perceptron (MLP)

• Output from one layer is used as input for the next (Feedforward network)

Architecture of Neural Networks

But how do we train it? 



 

Forward Propagation



Backpropagation
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Extra Regularization for Neural Nets

Dropout: accuracy in the absence of certain information

• Prevent dependence on any one (or any small combination) of neurons



Capacity, Overfitting and Underfitting

1) Make training error small
2) Make the gap between training and test error small

Capacity (fitting ability)

Low capacity High capacity
   



Time for a quiz and tutorial!

https://tinyurl.com/geocomp2025



Back to the code 

When people want to use Machine Learning without math



1. In each epoch, randomly shuffle the training data

2. Partition the shuffled training data into mini-batches

3. For each mini-batch, apply a single step of gradient 
descent
• Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs

How training works



• What can we do?
• Should we change the learning rate?
• Should we initialize differently?
• Do we need more training data?
• Should we change the architecture?
• Should we run for more epochs?
• Are the features relevant for the problem?

• Debugging is an art
• We’ll develop good heuristics for choosing good architectures and hyper 

parameters

Debugging a neural network



Extra readings

Deep Learning book:

- Chapter 5.9: Intro to Stochastic Gradient Descent (SGD)
- Chapter 6: Multilayer perceptrons
- Chapter 6.2.2: Output Units (Activation functions)
- Chapter 6.5: Back-Propagation
- Chapter 8.3: Basic Algorithms (Optimizers)

https://www.deeplearningbook.org/

