SPATIAL ECOLOGY

Perceptron & Neural Nets

Antonio Fonseca



Agenda

0) Preparing for the paper discussion (Class 6)

1) Perceptron

* |ntro to optimization
* Perceptron

* Optimizers

* Hands-on tutorial

2) Feedforward Neural Networks
e The limitations of Perceptrons
* Multi-layer Perceptron

* Training: the forward and back-propagation
* Debugging tips



BYOP (Bring Your Own Paper) (Nov 19th)

1) Pick a paper related to your field that is using machine learning
* You will introduce the paper (motivation, data, etc)

*| will explain the ML method

* Your opportunity to explore a new method

2) Send me the title of the paper and the link (must be open access) by
next Friday!!

* The received papers will be voted
*The top 2 or 3 will be discussed



Perceptron: Threshold Logic
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Perceptron: Threshold Logic
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Activation functions
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Optimizers (pt1)

Gradient
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Stochastic gradient descent (SGD)




Optimizers (pt1) practical est

Ir_val =[1;0.1; 0.01]
momentum_val =
nesterov_val = ‘False’

Hyperparameters decay val = 1e-6
* Learning rate (a)
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Stochastic gradient descent (SGD)

Result of a large learning rate a



Optimizers

Hyperparameters
* Learning rate («)
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Wit = Wi + Awy

Stochastic gradient descent (SGD)



Gradient Descent

* Gradient descent refers to taking a step in the direction of the
gradient (partial derivative) of a weight or bias with respect to the
loss function

* Gradients are propagated backwards through the network in a
process known as backpropagation

* The size of the step taken in the direction of the gradient is called the
learning rate



Time for a quiz and tutorial!

https://tinyurl.com/geocomp2025



Optimizers
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Optimizers

Hyperparameters
* Learning rate (a)
* Momentum ()
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Stochastic gradient descent with momentum (SGD+Momentum)



Optimizers
Hard to pick right hyperparameters

-Small learning rate: long convergence time
- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter
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Optimizers

RMSprop: decaying average of the past squared gradients
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Optimizers

ADAM: decaying average of the past squared gradients and momentum

RMSprop / Adadelta
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Optimizer Comparison

Gradient Descent
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Which optimizer is the best?



Multi-layer
Perceptron



Limitations of the Perceptron
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Let’s play with it!

Tinker With a Neural Network Right Here in Your Browser.

Dont Worry, You Can't Break It. We Promise.
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http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=10&networkShape=2,3&seed=0.68304&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&batchSize_hide=false

Architecture of Neural Networks

input layer ¢

But how do we train it?

* Sometimes called multi-layer perceptron (MLP)

e Output from one layer is used as input for the next (Feedforward network)



Forward Propagation

 Store weights and biases as matrices

e Suppose we are considering the weights from the second (hidden)
layer to the third (output) layer

* w is the weight matrix with wj; the weight for the connection between the ith
neuron in the second layer and the jth neuron in the third layer
* b is the vector of biases in the third layer

* a is the vector of activations (output) of the
2" |ayer

* a’ the vector of activations (output) of

the third layer
a =oc(wa+b)
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Backpropagation

1. Input z: Set the corresponding activation a'! for the input

layer.
2. Feedforward: For each !l = 2,3,..., L compute
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Extra Regularization for Neural Nets

Dropout: accuracy in the absence of certain information

* Prevent dependence on any one (or any small combination) of neurons

pPwW
Present with Always

probability p present

(a) At training time (b) At test time

(a) Standard Neural Net (b) After applying dropout.



Capacity, Overfitting and Underfitting

1) Make training error small
2) Make the gap between training and test error small

Capacity (fitting ability)

1 2 9
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Underfitting Appropriate capacity Overtitting

High capacity




Time for a quiz and tutorial!

https://tinyurl.com/geocomp2025



Back to the code

When people want to use Machine Learning without math




How training works

In each epoch, randomly shuffle the training data
Partition the shuffled training data into mini-batches

For each mini-batch, apply a single step of gradient

descent
* Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs



Debugging a neural network

* What can we do?
* Should we change the learning rate?
* Should we initialize differently?
* Do we need more training data?
* Should we change the architecture?
* Should we run for more epochs?
* Are the features relevant for the problem?

* Debugging is an art

* We'll develop good heuristics for choosing good architectures and hyper
parameters



Extra readings

Deep Learning book:

- Chapter 5.9: Intro to Stochastic Gradient Descent (SGD)
napter 6: Multilayer perceptrons

napter 6.2.2: Output Units (Activation functions)
hapter 6.5: Back-Propagation

napter 8.3: Basic Algorithms (Optimizers)

C
- C
- C

C


https://www.deeplearningbook.org/

