SPATIAL ECOLOGY

Perceptron & Neural Nets

Antonio Fonseca

Agenda

0) Preparing for the paper discussion (Class 6)

1) Perceptron

* |ntro to optimization
* Perceptron

* Optimizers

* Hands-on tutorial

2) Feedforward Neural Networks
e The limitations of Perceptrons
* Multi-layer Perceptron

* Training: the forward and back-propagation
* Debugging tips

BYOP (Bring Your Own Paper) (Nov 19th)

1) Pick a paper related to your field that is using machine learning
* You will introduce the paper (motivation, data, etc)

*| will explain the ML method

* Your opportunity to explore a new method

2) Send me the title of the paper and the link (must be open access) by
next Friday!!

* The received papers will be voted
*The top 2 or 3 will be discussed

Perceptron: Threshold Logic

Dendrite " -
n termin ———
T
/ —1
,_ >
Soma (cell body) \
/ l & Im
O =% -7
e) Outputs
Myelin sheat Output paists = synap
L Myelinated axon ttunk’ Weights B;)as

r1 o— Wy

T Activation
function Output

Inputs ¢ T2 00— W2 ——— Z f Y

e

3 o—— W3

Perceptron: Threshold Logic

0 if yw ' f(x) > 0
—yw f(x) ifyw'f(x) <0

Lperc (x,9) = {

Bias
b

T Activation
/\ function Output
Z > f - U

Weights

1 o— W1

Inputs { T2 o——— W2

Activation functions

Sigmoid] Leaky RelLU)
o max(0.1x, x)

0-(33) T 14e=

tanh Maxout

tanh(:c) e * max(wirm + b1, wQTT + b2)

ReLU / ELU J

T .2 ()
maX(()) fE) N) {a(ex _ 1) G - .

Optimizers (pt1)

Gradient

A _ oE
Wk =~ owy, Error

. "' " '.“ " _I ! ”iv_ 7-» r_, ,‘ ‘ ‘.’
= E w'X; — AT e e,
awk< (~ i)) s : Ny,

Wit1 = Wi + Awyg

W,

Stochastic gradient descent (SGD)

Optimizers (pt1) practical est

Ir_val =[1;0.1; 0.01]
momentum_val =
nesterov_val = ‘False’

Hyperparameters decay val = 1e-6
* Learning rate (a)

0E
AWk = _aa_VVk

— —aa—VVk< Z(WTX yl)

Wiy1 = Wi + Awy

Stochastic gradient descent (SGD)

Result of a large learning rate a

Optimizers

Hyperparameters
* Learning rate («)

oE

Wit = Wi + Awy

Stochastic gradient descent (SGD)

Gradient Descent

* Gradient descent refers to taking a step in the direction of the
gradient (partial derivative) of a weight or bias with respect to the
loss function

* Gradients are propagated backwards through the network in a
process known as backpropagation

* The size of the step taken in the direction of the gradient is called the
learning rate

Time for a quiz and tutorial!

https://tinyurl.com/geocomp2025

Optimizers

Optimizers
Hyperparameters \\
: Sox
* Learning rate (a)
* ’
A oF Local Mini)
Wy = —a'a—ka OCa Inima
_—aa—Wk< Z(WTX V;)i) \\ : ,‘

Wir1 = W; + Awy, \\\\ /
N /

Stochastic gradient descent (SGD) | \/

Multiple samples

Optimizers

Hyperparameters
* Learning rate (a)
* Momentum ()

Vi1 = VP — a’a—wk< Z(WTX Yi)i)

Wiy1 =W;+v

—-30
-30 =20 -10 O 10 20

SGD

SGD+Momentum

Stochastic gradient descent with momentum (SGD+Momentum)

Optimizers
Hard to pick right hyperparameters

-Small learning rate: long convergence time
- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter

AW, . = —qr O, = —aV,E(w,) - Learning rate might decrease too fast
et OWy ¢ wERTE - Might not converge
9ti = WwE(we,) - a
Wittt = Wei — ——/———=9It,i
—Giy1,i = Gri + 910 O i JGei T €

accumulated squared gradient

Optimizers

RMSprop: decaying average of the past squared gradients

Adadelta
Elg9?]; = YE[9%];-1+(1 —y)g? E[AL]: = YE[AG) -1+ (1 = V)A
\— Exponentially decaying average _ \/E[Agv]t + €
Aw; = It
1/ Gt,i + €
oE; — Exponentially decaying over the weights
)t

gei = P (we:) — Ve = W -
' ’ t+1,i — Wt It
Gt,i + E

Gey1=VGei + (1 —V¥)Ge, O, Gt

Optimizers

ADAM: decaying average of the past squared gradients and momentum

RMSprop / Adadelta
9ei = VWwEWe;) — U = 1 -t t
Gev1,i = VGei + (1= ¥)gri O Ge,i - Ve = Bove + (1 — ﬁz)g?— i
my =pime_q + (1= F1)9:
L
my = T

Wis1,i = Wei —

A\

U+ €

Optimizer Comparison

Gradient Descent

— SDG >, === Momentum
= SGD with Momentum 2 e NEStETOV
| AdaGrad wewe AdaGrad
Adam
z

-15~-1.00

Which optimizer is the best?

Multi-layer
Perceptron

Limitations of the Perceptron

I1
AND
| I, out
o |o |o
0 1 0
1 0o |o
1 1 1
|2
|1 A
OR
I I, out
o |o |o (1, 0) o o (1)
0 1 1 \
1 0 1 |
1 1 1 \ l
® O >

Perceptron

sigmoid

i sigmoid
o y.

._--_-.__..-----_...- .

sigmoid

h] . sigmoid h

sigmoid + polynomial transform

Let’s play with it!

Tinker With a Neural Network Right Here in Your Browser.

Dont Worry, You Can't Break It. We Promise.

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4|
000,352 0.03 Tanh None - 0 v Classification v

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.153
you want to use? you want to feed in? Y= Y — Training loss 0.181
e 2 neurons 3 neurons
: O
Ji
A ool
-0 e
2 5 ° '.’.o %
Ratio of training to S .o DO C2
o QUG
test data: 50% oA 0
o ORI
° e o o ...
Noise: 10 o 0
° o °
_‘ .o O e
5 OC
: o 0% < 3 .
Batch size: 10 G A% o 4
—e
0
REGENERATE

Colors shows

Try it h e re Y data, neuron and 11 ! -

weight values

[J Showtestdata [] Discretize output

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=10&networkShape=2,3&seed=0.68304&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&batchSize_hide=false

Architecture of Neural Networks

input layer ¢

But how do we train it?

* Sometimes called multi-layer perceptron (MLP)

e Output from one layer is used as input for the next (Feedforward network)

Forward Propagation

 Store weights and biases as matrices

e Suppose we are considering the weights from the second (hidden)
layer to the third (output) layer

* w is the weight matrix with wj; the weight for the connection between the ith
neuron in the second layer and the jth neuron in the third layer
* b is the vector of biases in the third layer

* a is the vector of activations (output) of the
2" |ayer

* a’ the vector of activations (output) of

the third layer
a =oc(wa+b)

1
= EZ(aiL — }’i)z
i

cost E = E(a")

Backpropagation

1. Input z: Set the corresponding activation a'! for the input

layer.
2. Feedforward: For each !l = 2,3,..., L compute
z! = w'a! + bt and o’ = o(2}).
Zj _ZW all+bl a—a Ewﬂaf1+b =a(zjl)

¢

Output error 6*: Compute the vector 6* = V,C ® o'(2F).

4. Backpropagate the error: Foreach! =L —1,L —2,...,2 0E OE aa 0E

6 = o' (z*
compute ¢! = ((w™1)76"*1) © o'(2). / azf daf 0z} aaf @)
5. Output: The gradient of the cost function is given by ,_OE OF az{“ azil+1 -
ac 1151 B . sl §; = = = 5; "
o, =a, 0; and —5] = 4;. J azjl azil+1 azg GZ} i

a(z Wl+1 l+bl+1)
0E OE da}o(wja; 0z

1 l
awﬁ aai 6Zj Owji

6l+1 Z Wl+16l+1o.l(zjl) (2)

Extra Regularization for Neural Nets

Dropout: accuracy in the absence of certain information

* Prevent dependence on any one (or any small combination) of neurons

pPwW
Present with Always

probability p present

(a) At training time (b) At test time

(a) Standard Neural Net (b) After applying dropout.

Capacity, Overfitting and Underfitting

1) Make training error small
2) Make the gap between training and test error small

Capacity (fitting ability)

1 2 9
Low capacity ~——— y = Z wix! y = Z w;xt y = Z w;x!
i L i

Underfitting Appropriate capacity Overtitting

High capacity

Time for a quiz and tutorial!

https://tinyurl.com/geocomp2025

Back to the code

When people want to use Machine Learning without math

How training works

In each epoch, randomly shuffle the training data
Partition the shuffled training data into mini-batches

For each mini-batch, apply a single step of gradient

descent
* Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs

Debugging a neural network

* What can we do?
* Should we change the learning rate?
* Should we initialize differently?
* Do we need more training data?
* Should we change the architecture?
* Should we run for more epochs?
* Are the features relevant for the problem?

* Debugging is an art

* We'll develop good heuristics for choosing good architectures and hyper
parameters

Extra readings

Deep Learning book:

- Chapter 5.9: Intro to Stochastic Gradient Descent (SGD)
napter 6: Multilayer perceptrons

napter 6.2.2: Output Units (Activation functions)
hapter 6.5: Back-Propagation

napter 8.3: Basic Algorithms (Optimizers)

C
- C
- C

C

https://www.deeplearningbook.org/

