
Perceptron & Neural Nets
Antonio Fonseca

Agenda
0) Preparing for the paper discussion (Class 6)

1) Perceptron
• Intro to optimization

• Perceptron

• Optimizers

• Hands-on tutorial

2) Feedforward Neural Networks
• The limitations of Perceptrons

• Multi-layer Perceptron

• Training: the forward and back-propagation

• Debugging tips

BYOP (Bring Your Own Paper) (Nov 19th)
1) Pick a paper related to your field that is using machine learning

• You will introduce the paper (motivation, data, etc)

• I will explain the ML method

• Your opportunity to explore a new method

2) Send me the title of the paper and the link (must be open access) by
next Friday!!

• The received papers will be voted

• The top 2 or 3 will be discussed

Perceptron: Threshold Logic

Perceptron: Threshold Logic

Activation functions

Optimizers (pt1)

Gradient

Stochastic gradient descent (SGD)

Optimizers (pt1)

Stochastic gradient descent (SGD)

Practical test:
lr_val = [1; 0.1; 0.01]
momentum_val = 0
nesterov_val = ‘False'
decay_val = 1e-6

Optimizers

Stochastic gradient descent (SGD)

Watch out for local minimal areas

• Gradient descent refers to taking a step in the direction of the
gradient (partial derivative) of a weight or bias with respect to the
loss function

• Gradients are propagated backwards through the network in a
process known as backpropagation

• The size of the step taken in the direction of the gradient is called the
learning rate

Gradient Descent

Time for a quiz and tutorial!

https://tinyurl.com/geocomp2025

Optimizers

Optimizers

Stochastic gradient descent (SGD)

Local Minima

Multiple samples

Optimizers

Stochastic gradient descent with momentum (SGD+Momentum)

 SGD+Momentum

SGD

Optimizers

Hard to pick right hyperparameters

- Small learning rate: long convergence time

- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter

- Learning rate might decrease too fast
- Might not converge

accumulated squared gradient

Optimizers

RMSprop: decaying average of the past squared gradients

Exponentially decaying average

Adadelta

Exponentially decaying over the weights

Optimizers

ADAM: decaying average of the past squared gradients and momentum

RMSprop / Adadelta

Which optimizer is the best?

Multi-layer
Perceptron

Perceptron

Limitations of the Perceptron

Try it here

Let’s play with it!

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=10&networkShape=2,3&seed=0.68304&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&batchSize_hide=false

• Sometimes called multi-layer perceptron (MLP)

• Output from one layer is used as input for the next (Feedforward network)

Architecture of Neural Networks

But how do we train it?

Forward Propagation

Backpropagation

(1)

(2)

Extra Regularization for Neural Nets

Dropout: accuracy in the absence of certain information

• Prevent dependence on any one (or any small combination) of neurons

Capacity, Overfitting and Underfitting

1) Make training error small
2) Make the gap between training and test error small

Capacity (fitting ability)

Low capacity High capacity

Time for a quiz and tutorial!

https://tinyurl.com/geocomp2025

Back to the code

When people want to use Machine Learning without math

1. In each epoch, randomly shuffle the training data

2. Partition the shuffled training data into mini-batches

3. For each mini-batch, apply a single step of gradient
descent
• Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs

How training works

• What can we do?
• Should we change the learning rate?
• Should we initialize differently?
• Do we need more training data?
• Should we change the architecture?
• Should we run for more epochs?
• Are the features relevant for the problem?

• Debugging is an art
• We’ll develop good heuristics for choosing good architectures and hyper

parameters

Debugging a neural network

Extra readings

Deep Learning book:

- Chapter 5.9: Intro to Stochastic Gradient Descent (SGD)
- Chapter 6: Multilayer perceptrons
- Chapter 6.2.2: Output Units (Activation functions)
- Chapter 6.5: Back-Propagation
- Chapter 8.3: Basic Algorithms (Optimizers)

https://www.deeplearningbook.org/

