SPATIAL ECOLOGY

Neural Nets & Convolutional
Neural Networks

Antonio Fonseca

Agenda

1) Feedforward Neural Networks

®* The limitations of Perceptrons

®* Multi-layer Perceptron

® Training: the forward and back-propagation
®* Debugging tips

® Tutorial: Neural Nets for the tree height dataset

2) Convolutional Neural Networks

o Spatial locality structure

o Kernels, padding, pooling

o Classification tasks

o Saliency Analysis

o Tutorial: data batching, classification of satellite images, WandB

Perceptron: Threshold Logic

0 if yw ' f(x) > 0
—yw f(x) ifyw'f(x) <0

Lperc (x,9) = {

Bias
b

T Activation
/\ function Output
Z > f - U

Weights

1 o— W1

Inputs { T2 o——— W2

Activation functions

Sigmoid] Leaky RelLU)
o max(0.1x, x)

0-(33) T 14e=

tanh Maxout

tanh(:c) e * max(wirm + b1, wQTT + b2)

ReLU / ELU J

T .2 ()
maX(()) fE) N) {a(ex _ 1) G - .

Optimizers (pt1)

Gradient

A _ oE
Wk =~ owy, Error

. "' " '.“ " _I ! ”iv_ 7-» r_, ,‘ ‘ ‘.’
= E w'X; — AT e e,
awk< (~ i)) s : Ny,

Wit1 = Wi + Awyg

W,

Stochastic gradient descent (SGD)

Optimizers

Hyperparameters
* Learning rate («)

oE

Wit = Wi + Awy

Stochastic gradient descent (SGD)

Optimizers

Optimizers
Hyperparameters \\
: Sox
* Learning rate (a)
* ’
A oF Local Mini)
Wy = —a'a—ka OCa Inima
_—aa—Wk< Z(WTX V;)i) \\ : ,‘

Wir1 = W; + Awy, \\\\ /
N /

Stochastic gradient descent (SGD) | \/

Multiple samples

Optimizers

Hyperparameters
* Learning rate (a)
* Momentum ()

Vi1 = VP — a’a—wk< Z(WTX Yi)i)

Wiy1 =W;+v

—-30
-30 =20 -10 O 10 20

SGD

SGD+Momentum

Stochastic gradient descent with momentum (SGD+Momentum)

Optimizers

Hard to pick right hyperparameters
-Small learning rate: long convergence time
- Large learning rate: convergence problems

Adagrad: adapts learning rate to each parameter

0E) : :
Awy, = —a t _ —aV, E(w;) Learning rate might decrease too fast

OWy ¢ - Might not converge

gei = VWWEWe;) - a

Wii1,i = Wti — —F7——U0t,i
Gev1i=Gei + 960 O Gei JGti T €

Optimizers

RMSprop: decaying average of the past squared gradients

Adadelta
Elg?]; = YE[9%];-1+(1 —y)g? E[AL]: = YE[AL]e-1+(1 =)A
Exponentially decaying average Aw, = \/E[Aﬁv]t +e€ g
‘ A/ Gt,i + € ‘
0E;
AWy = —a Wit = —aV,E(w) = —agy,;

gei = P (wes) — e = W -
’ ’ t+1,i — Wt It
Gt,i + E

Gey1=VGei + (1 —V¥)Ge, O, Gt

Optimizers

ADAM: decaying average of the past gradients and its square

RMSprop / Adadelta

9ei = VwEwe,;) D, = n :
Ger1,i = VGei ¥ (1= ¥)Gei O Gt - ve = Pove1 + (1= Ba)ge — IR

me = pyme_1 + (1 —P1)g¢
~ mg
mt —

Wis1,i = Wei —

A\

U+ €

Optimizer Comparison

Gradient Descent

— SDG >, === Momentum
= SGD with Momentum 2 e NEStETOV
| AdaGrad wewe AdaGrad
Adam
z

-15~-1.00

Which optimizer is the best?

Multi-layer
Perceptron

Limitations of the Perceptron

I1
AND
| I, out
o |o |o
0 1 0
1 0o |o
1 1 1
|2
|1 A
OR
I I, out
o |o |o (1, 0) o o (1)
0 1 1 \
1 0 1 |
1 1 1 \ l
® O >

Perceptron

sigmoid

i sigmoid
o y.

._--_-.__..-----_...- .

sigmoid

h] . sigmoid h

sigmoid + polynomial transform

Let’s play with it!

Tinker With a Neural Network Right Here in Your Browser.

Dont Worry, You Can't Break It. We Promise.

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4|
000,352 0.03 Tanh None - 0 v Classification v

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.153
you want to use? you want to feed in? Y= Y — Training loss 0.181
e 2 neurons 3 neurons
: O
Ji
A ool
-0 e
2 5 ° '.’.o %
Ratio of training to S .o DO C2
o QUG
test data: 50% oA 0
o ORI
° e o o ...
Noise: 10 o 0
° o °
_‘ .o O e
5 OC
: o 0% < 3 .
Batch size: 10 G A% o 4
—e
0
REGENERATE

Colors shows

Try it h e re Y data, neuron and 11 ! -

weight values

[J Showtestdata [] Discretize output

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=10&networkShape=2,3&seed=0.68304&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&batchSize_hide=false

Architecture of Neural Networks

input layer ¢

But how do we train it?

* Sometimes called multi-layer perceptron (MLP)

e Output from one layer is used as input for the next (Feedforward network)

Forward Propagation

* Store weights and biases as matrices

* Suppose we are considering the weights from the second (hidden)
layer to the third (output) layer

* wis the weight matrix with w, the weight for the connection between the ith
neuron in the second layer and the /™ neuron in the third layer

* b is the vector of biases in the third layer

* a is the vector of activations (output) of

the 2nd layer

* a'is the vector of activations (output) of . e

the third layer

a =oc(wa+b)

1
= EZ(aiL — }’i)z
i

cost E = E(a")

Backpropagation

1. Input z: Set the corresponding activation a'! for the input

layer.
2. Feedforward: For each !l = 2,3,..., L compute
z! = w'a! + bt and o’ = o(2}).
Zj _ZW all+bl a—a Ewﬂaf1+b =a(zjl)

¢

Output error 6*: Compute the vector 6* = V,C ® o'(2F).

4. Backpropagate the error: Foreach! =L —1,L —2,...,2 0E OE aa 0E

6 = o' (z*
compute ¢! = ((w™1)76"*1) © o'(2). / azf daf 0z} aaf @)
5. Output: The gradient of the cost function is given by ,_OE OF az{“ azil+1 -
ac 1151 B . sl §; = = = 5; "
o, =a, 0; and —5] = 4;. J azjl azil+1 azg GZ} i

a(z Wl+1 l+bl+1)
0E OE da}o(wja; 0z

1 l
awﬁ aai 6Zj Owji

6l+1 Z Wl+16l+1o.l(zjl) (2)

Extra Regularization for Neural Nets

Dropout: accuracy in the absence of certain information

* Prevent dependence on any one (or any small combination) of neurons

pPwW
Present with Always

probability p present

(a) At training time (b) At test time

(a) Standard Neural Net (b) After applying dropout.

Capacity, Overfitting and Underfitting

1) Make training error small
2) Make the gap between training and test error small

Capacity (fitting ability)

1 2 9
Low capacity ~——— y = Z wix! y = Z w;xt y = Z w;x!
i L i

Underfitting Appropriate capacity Overtitting

High capacity

Back to the code

When people want to use Machine Learning without math

How training works

In each epoch, randomly shuffle the training data
Partition the shuffled training data into mini-batches

For each mini-batch, apply a single step of gradient

descent
* Gradients are calculated via backpropagation (the next topic)

4. Train for multiple epochs

Debugging a neural network

* What can we do?
* Should we change the learning rate?
* Should we initialize differently?
* Do we need more training data?
* Should we change the architecture?
* Should we run for more epochs?
* Are the features relevant for the problem?

* Debugging is an art

* We'll develop good heuristics for choosing good architectures and hyper
parameters

Extra readings

Deep Learning book:

- Chapter 5.9: Intro to Stochastic Gradient Descent (SGD)
napter 6: Multilayer perceptrons

napter 6.2.2: Output Units (Activation functions)
hapter 6.5: Back-Propagation

napter 8.3: Basic Algorithms (Optimizers)

C
- C
- C

C

https://www.deeplearningbook.org/

Convolutional
Neural Networks

Taking An Image as an Input

_"x‘ WAL M ’;

AI.
i
|

|

5..

SOCCER /°

FEOF

==l
| —— T

b}

i
’_]ETTF.A
< gy

)
»

(324 Sy it . b T L s 4—-‘ et e gty ‘:&';M%%m&
a soccer player is kicking a soccer ball a street sign on a pole in front of a building a couple of giraffe standing next to each
other

NNs have been very good at classifying real world images

First architecture was LeNet formulated by Yann Lecun in 1988

Images are a series of Pixel Values

Grayscale images:
0=Black
255 = White

Spatial locality structure

Handling images with Neural Networks

\\v‘
SR

input layer |

XRK
6{%:‘.‘3’

NN
N
-
= N[O IN| PO ||

Works well for simple images, but fails when there are more complex patterns in the image

Local receptive fields

Make connections in small, localized regions of the input image

input neurons
2288 first hidden layer
00000 e ———0
00000~

00000

Image taken from Michael Neilsen’s book “Neural Networks and Deep Learning”

Local receptive fields

Slide the local receptive field over by one (or more) pixel and repeat

input neurons

29004 first hidden laver
0000 EE————— (0
0000~

O
Q0000

Image taken from Michael Neilsen’s book “Neural Networks and Deep Learning”

The convolution operation

1/1(1]|0|0
| o/1|/1(|1]0 10 |4
mage 0o/o0|1|1]1 0o[1]|0
101
o|o0|1(1]|0
0lilalolo Filter/ 1. Pointwise multiply
Feature detector 2. Add result§
3. Translate filter
1X1 1x0 1x1 O 0
0><0 1x1 1x0 1 0 4
Oxl 0x0 1x1 1 1
0O(0(1(1]0
O(1(1|0]0
Convolved
Image

Feature

Convolutional Neural Networks

\Colour Channels

N

Height: 4 Units
(Pixels)

- — Convolved
¢ 5 & Feature

Width: 4 Units
(Pixels)

Operation Filter Convolved

Image
. 0 0 0
Filters o 0 00
0 0 0
Original Image e
0 0 0
-1 0 1
0 1 0
Edge detection 1 -4 1
0o 1 0
[—1 -1 -1]
-1 8 -1
[-1 =1 =1}
[0 -1 0]
Sharpen s | 5 -1
| 0 -1 0]
x G (X |
Box blur 1
(nomalized) 6 134
y B R |
G ian bl 1 At
(auss':::m)ur = g g
approx
o 121

Stride

7 x 7 Input Volume 5 x 5 Output Volume

Stride 1

7 x 7 Input Volume 3 x 3 Output Volume

Stride 2

CNN over the
Image channels

* Input: WxHxD

* Requires four
hyperparameters:

* Number of filters K,

* their spatial extent F,

 the stride S,

« the amount of zero padding P

* Output: W, xH,xD,
where:
* W,=(W-F+2P)/S+1
* H,=(H-F+2P)/S+1
*D,=K

Input Volume (+pad 1) (7x7x3)

X[:,:,0]
0 0 O
0 1 2
0 0 O
0 1 0
0 2 2
(N 123 B!
0 0 O
X[Sip & 4edi]
0 0 O
0 0 2
0 2 2
0 2 1
N 123 12
0 0 O
0 0 O
X[Sip 2 42]
0 0 O
0 1 2
0 1 0
0 1 O
0 1 O
0 1 0
0 0 O

S N © O N O O

© N N == O O

Filter WO (3x3x3) Filter W1 (3x3x3)
w0[:,:,0] wlf:,:,0
-1 0 -1

Output Volume (3x3x2)
o[:,:,0]
U [ON 2

2 -6 0
5 g =

3
o[z,:,1]
-8 4|-3

% 551 =2
ol] =

toggle movement

Kernels

Example filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size [11x11x3], and each one is shared by the
55*55 neurons in one depth slice. Notice that the parameter sharing assumption is relatively reasonable: If detecting a
horizontal edge is important at some location in the image, it should intuitively be useful at some other location as well due to
the translationally-invariant structure of images. There is therefore no need to relearn to detect a horizontal edge at every one of

the 55*55 distinct locations in the Conv layer output volume.

Pooling

224x224x64 _ .
B m— Single depth slice
A
pool d |, 1112]| 4
max pool with 2x2 filters
onlReN 7 | 8 and stride 2 6 | 8
l ! 3 | 2 . 3| 4
1123 | 4
> S 112
224 downsampling
112 >
224 y

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this example, the
input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the
volume depth is preserved. Right: The most common downsampling operation is max, giving rise to max pooling, here shown
with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

Pooling layers

* Intuition: the exact location of a feature isn’t as important as its rough
location

* Helps prevent overfitting
* Reduces the number of parameters needed in later layers
* L, pooling is also common (L, norm)

Fully connected layer to combine

* Convolutional layers detected features
* Pooling layers reduced complexity
* Now we have a set of feature maps

on
no
cat (0.04) 4 possible outputs
boat (0.94)
r bird (0.02)
0 »

Image Classification with CNN

INPUT

e

CONVOLUTION + RELU

.

o

£

L~

x

ey

i

POOLING

CONVOLUTION + RELU

POOLING

— CAR
— TRUCK
— VAN

JAIEERERE

——
7L
-—
—
-—
—
-
—
L
°
o

d d — BICYCLE

FULLY SOFTMAX

FLAFTEN CONNECTED j

I N

N

FEATURE LEARNING

CONV and POOL layers output high-level features of input
Fully connected layer uses these features for classifying input image
Express output as probability of image belonging to a particular class

~

CLASSIFICATION
eyi

Zjeyj

softmax(y;) =

CNN and brain architecture

Electrical signal
from brain

Recording electrode —»

Visual area
/ of brain
{;m \
Q Stimulus

Hubel and Wiesel, 1959-1968

Brain “inspired” model

Usa
Uca
U Usq
Uca
Uo j
input)
layer T
Z(;Prtaritsifan recognition
extraction layer

Fukushima, 1980

Which pixels matter:
Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

P(elephant) = 0.95

P(elephant) = 0.75

Zeiler and Fergus, “Visualizing and Understanding Convolutional [eu_‘;.mm image is CCO public domain
Go-Karts image is CCO public domain

Networks”, ECCV 2014

Slide from Fei-Fei Li, Standford lecture

Which pixels matter:

Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

lense

128 Max
pooling

Zeiler and Fergus, “Visualizing and Understanding Convolutional
Networks”, ECCV 2014

Boat image is CCO public domain

Elephant image is CCO public domain

Go-Karts image is CCO public domain

schooner

08

0.7

0.6

0.5

04

0.98

0.96

0.94

0.92

0.90

o0.88

0.9

0.8

0.7

0.6

05

0.4

03

0.2

Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

AL —
192 128 /0% oag \dense
i . ; Gense] D O
jesa T hs dense | [dense|
192 128 Max
Max 128 Max pooling 03 048
pooling pooling

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

eeeeee

eeeeeee

el
P

il
|
1

O
O
Q

Compute gradient of (unnormalized) class

score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models

and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Time for a quiz and tutorial!

https://tinyurl.com/geocomp2025

