Managing Third-Party Libraries: A Survival Guide for Data Scientists

Francesco P. Lovergine < francesco@lovergine.com >

November 25, 2025

Table of Contents

- Introduction: The Dependency Challenge
- Package Management Fundamentals
- Native vs. C-Extension Packages
- 4 Version Management and Discovery
- **5** Source Control Best Practices
- 6 Conda vs. Miniforge
- Containerization Strategies
- 8 Jupyter Notebook Best Practices
- System and Package Upgrades
- Advanced Topics and Tools
- Practical Guidelines Summary
- Resources and Further Reading

Who am I?

- Researcher at CNR-IREA in Italy
- ullet One of the $\sim 1,000$ Debian developers (as frankie@debian.org)
- DebianGis team founder (about 20 years ago)
- Old-school computer scientist and geek
- The culprit of Giuseppe's transformation from a forest scientist to a Linux addict, even

The Modern Data Science Stack

The Reality:

- 100+ dependencies per project
- Multiple languages (Python, R, C/C++)
- Cross-platform requirements
- Rapid ecosystem evolution

Common Problems:

- "It works on my machine"
- Version conflicts
- Breaking changes
- Platform-specific issues

The Goal

Reproducible, maintainable, and reliable data science environments across Linux, macOS, and Windows.

What We'll Cover

- Package management fundamentals
- System packages vs. language-specific packages
- Native vs. C/C++- extension packages
- Version management and discovery
- Source control best practices
- Conda vs. Miniforge
- Containerization strategies
- Jupyter notebook management
- Upgrade strategies and dependency resolution

The Package Management Landscape

System-Level:

```
# Debian/Ubuntu
apt install python3-numpy

# RHEL/Fedora
dnf install python3-numpy

# macOS
brew install numpy

# GNU Guix
guix install python-numpy
```

Language-Level:

```
# Python
pip install numpy

# R
install.packages("dplyr")

# Julia
using Pkg; Pkg.add("DataFrames")
```

System Packages: Pros and Cons

Advantages:

- System-wide availability
- Security updates
- Dependency resolution
- Tested for your OS
- No compilation needed

Disadvantages:

- Often outdated
- Limited selection
- Requires root/admin
- OS-specific
- Can't have multiple versions

Recommendation

Use system packages for: base Python/R, system libraries (BLAS, LAPACK, OpenSSL), development tools.

Language Package Managers

Python Ecosystem:

```
pip install package_name  # PyPI
pip install package_name == 1.2.3  # Specific version
pip install -r requirements.txt  # From file
```

Key Files:

- requirements.txt Pin exact versions
- setup.py / pyproject.toml Package metadata
- constraints.txt Version boundaries

Best Practice

Always use virtual environments: python3 [--system-site-packages | --copies] -m venv myenv

Understanding Package Types

Pure Python Packages

- Written entirely in Python
- Platform-independent
- Examples: requests, click, pytest
- Fast installation, slower execution

C-Extension Packages

- Contains compiled C/C++/Fortran code
- Platform-specific binaries (wheels)
- Examples: numpy, pandas, scipy
- Requires compilation if no wheel available

Working with C-Extensions

Pre-compiled Wheels (Preferred):

```
1 pip install numpy # Downloads wheel if available
```

Source Installation (Fallback):

```
# Requires build tools
apt install build-essential python3-dev # Ubuntu
dnf install gcc python3-devel # Fedora
brew install gcc # macOS

pip install numpy --no-binary :all: # Force source
```

Warning

Source builds need: compiler, headers, BLAS/LAPACK libraries, correct environment variables (CFLAGS, LDFLAGS).

Performance Considerations

Package Type	Installation	Runtime
Pure Python	Fast	Slower
C-Extension (wheel)	Fast	Fast
C-Extension (source)	Slow	Fast

CPU Architecture Matters

Modern packages optimize for:

- SSE/AVX instructions (x86_64)
- Apple Silicon (ARM64)
- CUDA for GPU computing

Choose the right wheel for your hardware!

Discovering Package Versions

Installed packages:

```
pip list # All installed
pip show numpy # Details for one
pip list --outdated # Update candidates
```

Available versions:

```
pip index versions numpy  # All PyPI versions
pip install numpy==4  # Error shows versions
```

Dependency tree for installed packages:

```
pip install pipdeptree
pipdeptree  # Show dependencies
pipdeptree -p numpy  # Reverse dependencies
```

Version Pinning Strategies

Exact Pinning:

```
numpy==1.24.3

pandas==2.0.1

scikit-learn==1.2.2
```

Pros: Fully reproducible **Cons:** No security updates

Compatible Release:

```
1 numpy~=1.24.0  # >=1.24.0, <1.25.0
2 pandas>=2.0,<3.0
3 scikit-learn>=1.2
```

Pros: Patch updates **Cons:** Can break

Recommended Approach

Development: use compatible releases

Production: pin exact versions with pip freeze > requirements.txt

Lock Files for Reproducibility

Problem: requirements.txt doesn't capture transitive dependencies.

Solution: Use lock files:

```
# Poetry
poetry lock
poetry install

# Pipenv
pipenv lock
pipenv install --deploy

# pip-tools
pip-compile requirements.in
pip-sync requirements.txt
```

Key Benefit

Lock files capture the entire dependency graph with exact versions, ensuring identical environments across machines.

GitHub Repository: Releases vs. Branches

Releases/Tags (Stable):

```
pip install git+https://
github.com/user/repo.git
@v1.2.3

# Or download release
pip install https://github.
com/user/repo/archive/
v1.2.3.tar.gz
```

Branches (Development):

```
pip install git+https://
github.com/user/repo.git
@main

# Specific commit
pip install git+https://
github.com/user/repo.git
@abc1234
```

Warning

Never use @main or @master in production! These are moving targets and break reproducibility.

When to Use Git Installations

Appropriate Use Cases

- Testing unreleased bug fixes
- Contributing to development
- Using features not yet in PyPI release
- Private repositories (with authentication)

Better Alternatives

- Wait for official release
- Fork and create your own release
- Build a wheel and host internally
- Use commit SHA, not branch names

Production Rule

Handling Private Packages

Option 1: Private PyPI Server

```
pip install --index-url https://pypi.company.com/simple/ \
company-package
```

Option 2: Git with SSH Keys

```
pip install git+ssh://git@github.com/company/private@v1.0.0
```

Option 3: Build and Share Wheels

```
python -m build # Creates dist/*.whl
pip install dist/package-1.0.0-py3-none-any.whl
```

The Conda Ecosystem

What is Conda?

Cross-platform, language-agnostic package and environment manager. Not just for Python!

Anaconda:

- Full distribution (3+ GB)
 - 250+ pre-installed packages
 - Commercial use restrictions
 - defaults channel

Miniconda:

- Minimal installer
- Only conda + Python
- Same license as Anaconda
- defaults channel

Introducing Miniforge

What is Miniforge?

Community-driven conda installer using conda-forge channel by default.

Key Advantages:

- Completely free and open source
- No commercial restrictions
- conda-forge channel (more packages, faster updates)
- Better ARM64/Apple Silicon support
- Faster package builds
- Mamba included (faster resolver)

Recommendation

Use Miniforge for new projects. It's the future of conda.

Conda vs. Pip: Key Differences

Feature	Conda	Pip
Languages	Any (Python, R, $C++$)	Python only
Binary packages	Yes, always	Wheels when available
System libraries	Included	System-dependent
Repository	conda-forge	PyPI

Important

You can use both conda and pip in the same environment, but install conda packages first, then pip packages.

Conda Environment Management

Creating Environments:

```
conda create -n myproject python=3.11 conda activate myproject
```

Environment Files (environment.yml):

```
name: myproject
channels:
    - conda-forge
    - defaults
dependencies:
    - python=3.11
    - numpy=1.24
    - pandas=2.0
    - pip:
    - some-pip-only-package==1.0.0
```

Mamba: The Fast Alternative

What is Mamba?

- C++ reimplementation of conda
- Parallel downloads
- Better dependency resolution
- Drop-in replacement: mamba instead of conda

Installation:

```
conda install -n base mamba # In regular conda
the use Miniforge3 (includes mamba by default)
```

Usage:

```
1 mamba install numpy pandas scikit-learn # Much faster!
2 mamba create -n myenv python=3.11 numpy
```

Performance

Mamba can be 10-100x faster than conda for complex environments.

When to Containerize

Use Containers When:

- Deploying to production
- Complex system dependencies
- Ensuring reproducibility
- Multiple conflicting projects
- Team collaboration
- CI/CD pipelines

Skip Containers When:

- Simple exploration
- Interactive development
- GPU access is tricky
- Resource constraints
- Learning/prototyping

Golden Rule

Use virtual environments for development, containers for deployment.

Docker for Data Science

Basic Dockerfile:

```
1 FROM python:3.11-slim
3 WORKDIR /app
5 # System dependencies
6 RUN apt-get update && apt-get install -y \
      build-essential \
     && rm -rf /var/lib/apt/lists/*
10 # Python dependencies
11 COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
14 COPY . .
16 CMD ["python", "train_model.py"]
```

Multi-Stage Builds

Optimize image size:

```
# Build stage
FROM python:3.11 as builder

WORKDIR /app
COPY requirements.txt .

RUN pip install --user --no-cache-dir -r requirements.txt

# Runtime stage
FROM python:3.11-slim
WORKDIR /app
COPY --from=builder /root/.local /root/.local
COPY .

ENV PATH=/root/.local/bin:$PATH
CMD ["python", "app.py"]
```

Result

Build stage has compilers and build tools. Runtime stage is minimal.

Docker Compose for Data Pipelines

```
version: '3.8'
  services:
    jupyter:
       build: .
      ports:
         - "8888:8888"
      volumes:
         - ./notebooks:/app/notebooks
         - ./data:/app/data
       environment:
         - JUPYTER_ENABLE_LAB=yes
    database:
      image: postgres:15
      environment:
         - POSTGRES_PASSWORD=secret
17
      volumes:
        - pgdata:/var/lib/postgresql/data
  volumes:
    pgdata:
```

Alternative Container Tools

Docker Alternatives:

- Podman: Daemonless, rootless containers
- Singularity/Apptainer: HPC-focused, no root required
- LXC/LXD: System containers (not just applications)

Singularity for HPC:

- Designed for multi-user clusters
- Better GPU integration
- Can run Docker images
- Single-file containers

HPC Recommendation

Use Singularity if deploying to academic/research clusters.

The Jupyter Challenge

Common Problems:

- Kernel doesn't match environment
- Package imports fail mysteriously
- "Works in notebook, fails in script"
- Notebooks aren't reproducible
- Hard to version control

Root Causes:

- Global Jupyter vs. project-specific kernels
- Hidden state and execution order
- Cell outputs in version control
- Implicit dependencies

Setting Up Jupyter Properly

Install Jupyter in Each Environment:

Key Point

Each environment gets its own kernel. Select the right kernel in Jupyter.

Jupyter with Conda/Mamba

```
1 # Create conda environment
2 mamba create -n datasci python=3.11 jupyter numpy pandas
3 mamba activate datasci
5 # The kernel is automatically registered
6 jupyter lab
8 # To see all kernels
9 jupyter kernelspec list
11 # To remove a kernel
12 jupyter kernelspec uninstall myproject
```

Common Mistake

Installing Jupyter globally and trying to import project packages. Always install Jupyter in your project environment!

Version Control for Notebooks

Problem: Notebooks contain outputs, metadata, execution counts. **Solution 1: Strip outputs before committing**

```
# Using nbconvert
jupyter nbconvert --clear-output --inplace notebook.ipynb

# Using nbstripout (recommended)
pip install nbstripout
nbstripout notebook.ipynb

# Git hook (automatic)
nbstripout --install
```

Solution 2: Use Jupytext

```
pip install jupytext jupytext --to py:percent notebook.ipynb # Sync with .py
```

Commits the .py file instead of .ipynb!

Notebook to Production Code

The Workflow

- Explore in notebooks
- Extract functions to .py modules
- Import modules in notebooks
- Test modules independently
- Use notebooks for visualization only

Project Structure:

- project/
- notebooks/ (exploration.ipynb)
- src/ (data.py, models.py)
- tests/
- requirements.txt

Jupyter Extensions and Tools

Useful Extensions:

```
# JupyterLab extensions
pip install jupyterlab-git  # Git integration
pip install jupyterlab-lsp  # Code completion
pip install jupyterlab-code-formatter # Auto-format

# Variable inspector
pip install lckr-jupyterlab-variableinspector

# Table of contents
pip install jupyterlab-toc
```

Papermill for Notebook Automation:

```
pip install papermill papermill papermill input.ipynb output.ipynb -p param1 value1
```

The Upgrade Challenge

Murphy's Law of Dependencies

"If you upgrade any package, something will break."

Types of Upgrades:

- **① System OS upgrade** (Ubuntu $22.04 \rightarrow 24.04$)
- **2** Python version upgrade $(3.10 \rightarrow 3.11)$
- **1. Major package upgrade** (pandas $1.x \rightarrow 2.x$)
- Transitive dependency update

Cascade Effects:

- $\bullet \ \, \mathsf{System} \ \, \mathsf{upgrade} \to \mathsf{Python} \ \, \mathsf{upgrade} \to \mathsf{rebuild} \ \, \mathsf{all} \ \, \mathsf{packages} \\$
- NumPy upgrade → Pandas, SciPy, Scikit-learn need updates
- ullet One security patch o entire tree needs resolution

Safe Upgrade Strategy

Step 1: Assess Current State

```
pip list --outdated
pip check # Find conflicts
```

Step 2: Create Backup

```
pip freeze > requirements-backup.txt
conda env export > environment-backup.yml
```

Step 3: Test in Isolation

```
python -m venv test-upgrade
source test-upgrade/bin/activate
pip install -r requirements-backup.txt
pip install --upgrade package-to-upgrade
# Run tests!
```

Handling Dependency Conflicts

Understanding Conflicts:

```
$ pip install package-a package-b
ERROR: package-a requires numpy >= 1.24
package-b requires numpy <1.24</pre>
```

Resolution Strategies:

- Oheck if newer versions of both packages work together
- Use a compatible release constraint: numpy>=1.23,<1.25</p>
- Find alternative packages
- Ontact maintainers or file issues
- Fork and patch (last resort)

Pro Tip

Use pipdeptree to understand why a specific version is required.

Automated Dependency Management

Dependabot (GitHub):

```
# .github/dependabot.yml
version: 2
updates:
    - package-ecosystem: "pip"
    directory: "/"
    schedule:
    interval: "weekly"
    open-pull-requests-limit: 10
```

Renovate Bot: More powerful, supports multiple ecosystems, custom rules. **pip-tools:**

```
pip-compile --upgrade requirements.in
# Review changes in requirements.txt
pip-sync requirements.txt
```

Python Version Upgrades

Python 3.10 \rightarrow 3.11 \rightarrow 3.12 \rightarrow 3.13 Considerations:

- Check package compatibility on PyPI
- Some C-extensions need time to release wheels
- Performance improvements in newer versions
- New language features (pattern matching, etc.)
- Deprecation warnings matter

Recommended Approach

- Wait 3-6 months after Python release
- Check critical packages first (numpy, pandas, pytorch)
- Test thoroughly with warnings enabled: python -W all
- Weep one environment on old Python during transition

Dependency Resolution: Understanding the Algorithms

Why Resolution Matters:

- Finding compatible versions across 100+ packages
- Handling conflicting requirements
- Speed vs. correctness trade-offs

Four Different Approaches:

- Pip: Backtracking (The Detective)
- Conda: SAT Solver (The Mathematician)
- Poetry: Exhaustive Backtracking (The Planner)
- uv: PubGrub in Rust (The Speedrunner)

Resolver Comparison: Algorithms and Trade-offs

Tool	Algorithm	Analogy	Strength	Weakness
Pip	Backtracking	The Detective. Follows	Standard. Installed every-	Can be slow on bad paths;
		leads. If a lead goes cold,	where.	resolves only for current ma-
		goes back to the last clue.		chine.
Conda	SAT Solver	The Mathematician.	Handles complex non-Python	Heavy memory usage; "Solv-
		Translates requirements	binaries (C libraries, compil-	ing environment" can hang.
		into a giant logic formula	ers).	
		and solves it all at once.		
Poetry	Exhaustive Backtrack-	The Planner. Meticulously	Correctness. Guarantees	Slow. poetry lock is notori-
	ing	maps out the entire plan	reproducible builds across	ously time-consuming on large
		before doing anything.	teams.	projects.
uv	PubGrub (Rust)	The Speedrunner. Sprints	Speed. Instant resolution;	Newer tool; ecosystem is still
		through the maze, remem-	true universal locking.	maturing (though rapidly).
		bering every dead end so it		
		never double-checks.		

Resolution Strategies: When to Use Each

Use Pip when:

- Simple, pure-Python projects
- Quick prototyping
- Standard environments

Use Conda when:

- Scientific computing
- Non-Python dependencies
- Complex C/C++ libraries

Use Poetry when:

- Team collaboration
- Publishing packages
- Guaranteed reproducibility

Use uv when:

- Speed is critical
- CI/CD pipelines
- Large dependency trees
- Modern Python projects

Using Poetry for Project Management

```
1 # Install Poetry
curl -sSL https://install.python-poetry.org | python3 -
4 # Create project
5 poetry new myproject
6 cd myproject
8 # Add dependencies
9 poetry add numpy pandas scikit-learn
10 poetry add --group dev pytest black
12 # Install everything
13 poetry install
15 # Run in environment
16 poetry run python script.py
17 poetry shell # Activate environment
```

Using uv: The Fast Alternative to Poetry

What is uv?

- Written in Rust (extremely fast)
- 10-100x faster than pip/poetry
- Drop-in pip replacement
- Built-in virtual env management
- Compatible with standard tools

Key Features:

- Single binary install
- Works with existing projects
- Supports pyproject.toml
- Fast dependency resolution
- No separate venv step needed

When to Use uv

Choose uv for speed-critical workflows, CI/CD pipelines, or when you want pip-like simplicity with modern performance.

uv in Practice

Installation:

```
# Linux/macOS
curl -LsSf https://astral.sh/uv/install.sh | sh
# Windows
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
# With pip (fallback)
pip install uv
```

Basic Usage:

```
# Create project with virtual environment
uv venv
source .venv/bin/activate # or .venv\Scripts\activate on Windows
# Install packages (much faster than pip)
uv pip install numpy pandas scikit-learn
# Install from requirements.txt
uv pip install -r requirements.txt
# Compile requirements with dependencies
uv pip compile requirements.in -o requirements.txt
```

uv vs. Poetry vs. pip: Quick Comparison

Feature	pip	Poetry	uv	
Speed	Baseline	Slow	10-100× faster	
Virtual envs	Manual	Built-in	Built-in	
Lock files	Manual	Yes	Via compile	
Project init	No	Yes	No	
Learning curve	Low	Medium	Low	
Compatibility	100%	Good	100% pip	
Dependency resolution	Good	Excellent	Excellent	
Production ready	Yes	Yes	Yes	

Recommendation: Use uv for speed and pip compatibility, Poetry for full project management with opinionated structure.

Pyproject.toml (PEP 621)

Cross-Platform Considerations

Linux \rightarrow macOS \rightarrow Windows differences:

```
1 # File paths
2 os.path.join('data', 'file.csv') # Platform-agnostic
3 pathlib.Path('data') / 'file.csv' # Even better
4
5 # Line endings
6 # Use 'newline=""' in open() for CSV files
```

Package availability:

- Some packages are Linux-only (e.g., some system tools)
- Windows requires pre-built wheels for C-extensions
- macOS ARM64 (M1/M2/M3) support still catching up

Testing Your Environment

```
1 # test_environment.pv
2 import sys
3 import numpy as np
4 import pandas as pd
5 import sklearn
6
  def test_imports():
8
      """Test that critical packages import correctly."""
      assert sys.version_info >= (3, 10)
      print(f"Python: {sys.version}")
      print(f"NumPv: {np.__version__}")
      print(f"Pandas: {pd. version }")
      print(f"Scikit-learn: {sklearn.__version__}")
14
15 def test_numerical_stability():
16
      """Test basic numerical operations."""
      arr = np.random.rand(1000, 1000)
      result = np.linalg.inv(arr @ arr.T)
      assert result.shape == (1000, 1000)
21 if __name__ == "__main__":
      test_imports()
      test_numerical_stability()
      print("Environment OK!")
```

Quick Reference: Decision Tree

- Need reproducibility? → Lock files + containers
- ullet Scientific computing? o Use conda/miniforge
- **3** Pure Python project? \rightarrow venv + pip + pip-tools
- Production deployment? → Docker + pinned versions
- Jupyter notebook? → Install in each environment
- lacktriangle System libraries needed? ightarrow Use conda or system packages
- Bleeding edge features? → Git + commit SHA
- **1 Team collaboration?** \rightarrow Environment files + documentation

Best Practices Checklist

- ☐ Use virtual environments (always!)
- ☐ Pin dependencies in production
- ☐ Document system requirements
- ☐ Test on target platforms
- Keep environment files in version control
- Automate environment creation
- Regular security updates
- ☐ Use CI/CD to test environments
- Monitor for breaking changes
- Document upgrade procedures

Common Pitfalls to Avoid

Don't

- Install packages globally with sudo/admin (with a grain of salt)
- Use pip install --user (confusing!)
- Mix conda and pip randomly
- Ignore warnings during installation
- Use latest/master in requirements
- Skip testing after upgrades (because they fail...)
- Commit notebooks with outputs/data
- Upgrade everything at once

Tools Comparison Matrix

Feature	venv+pip	uv	conda	poetry	docker
Learning curve	Low	Low	Medium	Medium	High
Speed	Fast	Very Fast	Slow	Fast	Medium
Reproducibility	Good	Good	Good	Excellent	Excellent
System libs	No	No	Yes	No	Yes
Multi-language	No	No	Yes	No	Yes
Lock files	Manual	Via compile	Yes	Yes	N/A
Python only	Yes	Yes	No	Yes	No
Production	Yes	Yes	Yes	Yes	Yes

Recommended Workflow

Daily Development

- Use conda/mamba OR venv+pip
- Keep requirements/environment file updated
- Test regularly
- Ocument system dependencies

Pre-Production

- Pin all versions exactly
- Create lock file
- Build Docker image
- Test on target platform
- Ocument upgrade procedure

Essential Resources

Official Documentation:

- Python Packaging Guide: https://packaging.python.org
- Conda Documentation: https://docs.conda.io
- Docker Documentation: https://docs.docker.com
- PyPI: https://pypi.org

Community Resources:

- conda-forge: https://conda-forge.org
- Python Packaging Authority: https://www.pypa.io

Tools:

- Poetry: https://python-poetry.org
- uv: https://github.com/astral-sh/uv
- pip-tools: https://github.com/jazzband/pip-tools
- Miniforge: https://github.com/conda-forge/miniforge

Getting Help

When Things Go Wrong:

- Check error messages carefully
- Search for the error on Stack Overflow/Al overview (with a grain of salt for fake solutions)
- Oheck package issue trackers on GitHub
- Verify your Python/package versions
- Try in a fresh environment
- Ask on community forums

Key Debugging Commands:

- pip list See what's installed
- pip check Find conflicts
- pip show package Package details
- python -m site Python paths
- which python / where python Python location

Conclusions

Key Takeaways

- Dependency management is crucial for reproducible data science
- Choose tools based on needs (conda for science, venv for pure Python)
- Always use isolated environments
- Pin versions for production
- Test upgrades carefully
- Document everything
- Containerize for deployment
- Document everything and keep order

Questions? Confused?

Happy environment managing!