
Managing Third-Party Libraries:
A Survival Guide for Data Scientists

Francesco P. Lovergine <francesco@lovergine.com>

November 25, 2025

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 1 / 56

Table of Contents

1 Introduction: The Dependency Challenge

2 Package Management Fundamentals

3 Native vs. C-Extension Packages

4 Version Management and Discovery

5 Source Control Best Practices

6 Conda vs. Miniforge

7 Containerization Strategies

8 Jupyter Notebook Best Practices

9 System and Package Upgrades

10 Advanced Topics and Tools

11 Practical Guidelines Summary

12 Resources and Further Reading

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 2 / 56

Who am I?

Researcher at CNR-IREA in Italy

One of the ∼ 1, 000 Debian developers (as frankie@debian.org)

DebianGis team founder (about 20 years ago)

Old-school computer scientist and geek

The culprit of Giuseppe’s transformation from a forest scientist to a Linux addict, even

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 3 / 56

The Modern Data Science Stack

The Reality:

100+ dependencies per project

Multiple languages (Python, R, C/C++)

Cross-platform requirements

Rapid ecosystem evolution

Common Problems:

“It works on my machine”

Version conflicts

Breaking changes

Platform-specific issues

The Goal

Reproducible, maintainable, and reliable data science environments across Linux, macOS, and
Windows.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 4 / 56

What We’ll Cover

1 Package management fundamentals

2 System packages vs. language-specific packages

3 Native vs. C/C++-extension packages

4 Version management and discovery

5 Source control best practices

6 Conda vs. Miniforge

7 Containerization strategies

8 Jupyter notebook management

9 Upgrade strategies and dependency resolution

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 5 / 56

The Package Management Landscape

System-Level:

1 # Debian/Ubuntu

2 apt install python3 -numpy

3

4 # RHEL/Fedora

5 dnf install python3 -numpy

6

7 # macOS

8 brew install numpy

9

10 # GNU Guix

11 guix install python -numpy

Language-Level:

1 # Python

2 pip install numpy

3

4 # R

5 install.packages("dplyr")

6

7 # Julia

8 using Pkg; Pkg.add("DataFrames")

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 6 / 56

System Packages: Pros and Cons

Advantages:

System-wide availability

Security updates

Dependency resolution

Tested for your OS

No compilation needed

Disadvantages:

Often outdated

Limited selection

Requires root/admin

OS-specific

Can’t have multiple versions

Recommendation

Use system packages for: base Python/R, system libraries (BLAS, LAPACK, OpenSSL),
development tools.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 7 / 56

Language Package Managers

Python Ecosystem:

1 pip install package_name # PyPI

2 pip install package_name ==1.2.3 # Specific version

3 pip install -r requirements.txt # From file

Key Files:

requirements.txt - Pin exact versions

setup.py / pyproject.toml - Package metadata

constraints.txt - Version boundaries

Best Practice

Always use virtual environments: python3 [--system-site-packages | --copies] -m

venv myenv

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 8 / 56

Understanding Package Types

Pure Python Packages

Written entirely in Python

Platform-independent

Examples: requests, click, pytest

Fast installation, slower execution

C-Extension Packages

Contains compiled C/C++/Fortran code

Platform-specific binaries (wheels)

Examples: numpy, pandas, scipy

Requires compilation if no wheel available

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 9 / 56

Working with C-Extensions

Pre-compiled Wheels (Preferred):

1 pip install numpy # Downloads wheel if available

Source Installation (Fallback):

1 # Requires build tools

2 apt install build -essential python3 -dev # Ubuntu

3 dnf install gcc python3 -devel # Fedora

4 brew install gcc # macOS

5

6 pip install numpy --no -binary :all: # Force source

Warning

Source builds need: compiler, headers, BLAS/LAPACK libraries, correct environment variables
(CFLAGS, LDFLAGS).

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 10 / 56

Performance Considerations

Package Type Installation Runtime
Pure Python Fast Slower
C-Extension (wheel) Fast Fast
C-Extension (source) Slow Fast

CPU Architecture Matters

Modern packages optimize for:

SSE/AVX instructions (x86 64)

Apple Silicon (ARM64)

CUDA for GPU computing

Choose the right wheel for your hardware!

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 11 / 56

Discovering Package Versions

Installed packages:

1 pip list # All installed

2 pip show numpy # Details for one

3 pip list --outdated # Update candidates

Available versions:

1 pip index versions numpy # All PyPI versions

2 pip install numpy ==4 # Error shows versions

Dependency tree for installed packages:

1 pip install pipdeptree

2 pipdeptree # Show dependencies

3 pipdeptree -p numpy # Reverse dependencies

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 12 / 56

Version Pinning Strategies

Exact Pinning:
1 numpy ==1.24.3

2 pandas ==2.0.1

3 scikit -learn ==1.2.2

Pros: Fully reproducible
Cons: No security updates

Compatible Release:
1 numpy ~=1.24.0 # >=1.24.0, <1.25.0

2 pandas >=2.0 , <3.0

3 scikit -learn >=1.2

Pros: Patch updates
Cons: Can break

Recommended Approach

Development: use compatible releases
Production: pin exact versions with pip freeze > requirements.txt

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 13 / 56

Lock Files for Reproducibility

Problem: requirements.txt doesn’t capture transitive dependencies.
Solution: Use lock files:

1 # Poetry

2 poetry lock

3 poetry install

4

5 # Pipenv

6 pipenv lock

7 pipenv install --deploy

8

9 # pip -tools

10 pip -compile requirements.in

11 pip -sync requirements.txt

Key Benefit

Lock files capture the entire dependency graph with exact versions, ensuring identical
environments across machines.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 14 / 56

GitHub Repository: Releases vs. Branches

Releases/Tags (Stable):

1 pip install git+https ://

2 github.com/user/repo.git

3 @v1 .2.3

4

5 # Or download release

6 pip install https :// github.

7 com/user/repo/archive/

8 v1.2.3. tar.gz

Branches (Development):

1 pip install git+https ://

2 github.com/user/repo.git

3 @main

4

5 # Specific commit

6 pip install git+https ://

7 github.com/user/repo.git

8 @abc1234

Warning

Never use @main or @master in production! These are moving targets and break
reproducibility.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 15 / 56

When to Use Git Installations

Appropriate Use Cases

Testing unreleased bug fixes

Contributing to development

Using features not yet in PyPI release

Private repositories (with authentication)

Better Alternatives

Wait for official release

Fork and create your own release

Build a wheel and host internally

Use commit SHA, not branch names

Production Rule

If it’s not on PyPI with a version number, it’s not production-ready.
Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 16 / 56

Handling Private Packages

Option 1: Private PyPI Server

1 pip install --index -url https :// pypi.company.com/simple/ \

2 company -package

Option 2: Git with SSH Keys

1 pip install git+ssh :// git@github.com/company/private@v1 .0.0

Option 3: Build and Share Wheels

1 python -m build # Creates dist /*. whl

2 pip install dist/package -1.0.0 -py3 -none -any.whl

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 17 / 56

The Conda Ecosystem

What is Conda?

Cross-platform, language-agnostic package and environment manager. Not just for Python!

Anaconda:

Full distribution (3+ GB)

250+ pre-installed packages

Commercial use restrictions

defaults channel

Miniconda:

Minimal installer

Only conda + Python

Same license as Anaconda

defaults channel

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 18 / 56

Introducing Miniforge

What is Miniforge?

Community-driven conda installer using conda-forge channel by default.

Key Advantages:

Completely free and open source

No commercial restrictions

conda-forge channel (more packages, faster updates)

Better ARM64/Apple Silicon support

Faster package builds

Mamba included (faster resolver)

Recommendation

Use Miniforge for new projects. It’s the future of conda.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 19 / 56

Conda vs. Pip: Key Differences

Feature Conda Pip
Languages Any (Python, R, C++) Python only
Binary packages Yes, always Wheels when available
System libraries Included System-dependent
Repository conda-forge PyPI

Important

You can use both conda and pip in the same environment, but install conda packages first,
then pip packages.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 20 / 56

Conda Environment Management

Creating Environments:

1 conda create -n myproject python =3.11

2 conda activate myproject

Environment Files (environment.yml):

1 name: myproject

2 channels:

3 - conda -forge

4 - defaults

5 dependencies:

6 - python =3.11

7 - numpy =1.24

8 - pandas =2.0

9 - pip:

10 - some -pip -only -package ==1.0.0

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 21 / 56

Mamba: The Fast Alternative

What is Mamba?

C++ reimplementation of conda

Parallel downloads

Better dependency resolution

Drop-in replacement: mamba instead of conda

Installation:

1 conda install -n base mamba # In regular conda

2 # Or use Miniforge3 (includes mamba by default)

Usage:

1 mamba install numpy pandas scikit -learn # Much faster!

2 mamba create -n myenv python =3.11 numpy

Performance

Mamba can be 10-100x faster than conda for complex environments.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 22 / 56

When to Containerize

Use Containers When:

Deploying to production

Complex system dependencies

Ensuring reproducibility

Multiple conflicting projects

Team collaboration

CI/CD pipelines

Skip Containers When:

Simple exploration

Interactive development

GPU access is tricky

Resource constraints

Learning/prototyping

Golden Rule

Use virtual environments for development, containers for deployment.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 23 / 56

Docker for Data Science

Basic Dockerfile:

1 FROM python :3.11- slim

2

3 WORKDIR /app

4

5 # System dependencies

6 RUN apt -get update && apt -get install -y \

7 build -essential \

8 && rm -rf /var/lib/apt/lists/*

9

10 # Python dependencies

11 COPY requirements.txt .

12 RUN pip install --no -cache -dir -r requirements.txt

13

14 COPY . .

15

16 CMD [" python", "train_model.py"]

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 24 / 56

Multi-Stage Builds

Optimize image size:

1 # Build stage

2 FROM python :3.11 as builder

3 WORKDIR /app

4 COPY requirements.txt .

5 RUN pip install --user --no-cache -dir -r requirements.txt

6

7 # Runtime stage

8 FROM python :3.11- slim

9 WORKDIR /app

10 COPY --from=builder /root/.local /root/.local

11 COPY . .

12 ENV PATH=/root/. local/bin:$PATH

13 CMD [" python", "app.py"]

Result

Build stage has compilers and build tools. Runtime stage is minimal.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 25 / 56

Docker Compose for Data Pipelines

1 version: ’3.8’

2 services:

3 jupyter:

4 build: .

5 ports:

6 - "8888:8888"

7 volumes:

8 - ./ notebooks :/app/notebooks

9 - ./data:/app/data

10 environment:

11 - JUPYTER_ENABLE_LAB=yes

12
13 database:

14 image: postgres :15

15 environment:

16 - POSTGRES_PASSWORD=secret

17 volumes:

18 - pgdata :/var/lib/postgresql/data

19
20 volumes:

21 pgdata:

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 26 / 56

Alternative Container Tools

Docker Alternatives:

Podman: Daemonless, rootless containers

Singularity/Apptainer: HPC-focused, no root required

LXC/LXD: System containers (not just applications)

Singularity for HPC:

Designed for multi-user clusters

Better GPU integration

Can run Docker images

Single-file containers

HPC Recommendation

Use Singularity if deploying to academic/research clusters.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 27 / 56

The Jupyter Challenge

Common Problems:

Kernel doesn’t match environment

Package imports fail mysteriously

“Works in notebook, fails in script”

Notebooks aren’t reproducible

Hard to version control

Root Causes:

Global Jupyter vs. project-specific kernels

Hidden state and execution order

Cell outputs in version control

Implicit dependencies

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 28 / 56

Setting Up Jupyter Properly

Install Jupyter in Each Environment:

1 # Create environment

2 python -m venv myproject

3 source myproject/bin/activate

4

5 # Install Jupyter + kernel registration

6 pip install jupyter ipykernel

7 python -m ipykernel install --user --name=myproject \

8 --display -name="Python (myproject)"

9

10 # Launch Jupyter

11 jupyter lab

Key Point

Each environment gets its own kernel. Select the right kernel in Jupyter.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 29 / 56

Jupyter with Conda/Mamba

1 # Create conda environment

2 mamba create -n datasci python =3.11 jupyter numpy pandas

3 mamba activate datasci

4

5 # The kernel is automatically registered

6 jupyter lab

7

8 # To see all kernels

9 jupyter kernelspec list

10

11 # To remove a kernel

12 jupyter kernelspec uninstall myproject

Common Mistake

Installing Jupyter globally and trying to import project packages. Always install Jupyter in your
project environment!

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 30 / 56

Version Control for Notebooks

Problem: Notebooks contain outputs, metadata, execution counts.
Solution 1: Strip outputs before committing

1 # Using nbconvert

2 jupyter nbconvert --clear -output --inplace notebook.ipynb

3

4 # Using nbstripout (recommended)

5 pip install nbstripout

6 nbstripout notebook.ipynb

7

8 # Git hook (automatic)

9 nbstripout --install

Solution 2: Use Jupytext

1 pip install jupytext

2 jupytext --to py:percent notebook.ipynb # Sync with .py

Commits the .py file instead of .ipynb!

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 31 / 56

Notebook to Production Code

The Workflow
1 Explore in notebooks

2 Extract functions to .py modules

3 Import modules in notebooks

4 Test modules independently

5 Use notebooks for visualization only

Project Structure:

project/

notebooks/ (exploration.ipynb)

src/ (data.py, models.py)

tests/

requirements.txt

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 32 / 56

Jupyter Extensions and Tools

Useful Extensions:

1 # JupyterLab extensions

2 pip install jupyterlab -git # Git integration

3 pip install jupyterlab -lsp # Code completion

4 pip install jupyterlab -code -formatter # Auto -format

5

6 # Variable inspector

7 pip install lckr -jupyterlab -variableinspector

8

9 # Table of contents

10 pip install jupyterlab -toc

Papermill for Notebook Automation:

1 pip install papermill

2 papermill input.ipynb output.ipynb -p param1 value1

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 33 / 56

The Upgrade Challenge

Murphy’s Law of Dependencies

“If you upgrade any package, something will break.”

Types of Upgrades:

1 System OS upgrade (Ubuntu 22.04 → 24.04)

2 Python version upgrade (3.10 → 3.11)

3 Major package upgrade (pandas 1.x → 2.x)

4 Transitive dependency update

Cascade Effects:

System upgrade → Python upgrade → rebuild all packages

NumPy upgrade → Pandas, SciPy, Scikit-learn need updates

One security patch → entire tree needs resolution

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 34 / 56

Safe Upgrade Strategy

Step 1: Assess Current State

1 pip list --outdated

2 pip check # Find conflicts

Step 2: Create Backup

1 pip freeze > requirements -backup.txt

2 conda env export > environment -backup.yml

Step 3: Test in Isolation

1 python -m venv test -upgrade

2 source test -upgrade/bin/activate

3 pip install -r requirements -backup.txt

4 pip install --upgrade package -to -upgrade

5 # Run tests!

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 35 / 56

Handling Dependency Conflicts

Understanding Conflicts:

1 $ pip install package -a package -b

2 ERROR: package -a requires numpy >=1.24

3 package -b requires numpy <1.24

Resolution Strategies:

1 Check if newer versions of both packages work together

2 Use a compatible release constraint: numpy>=1.23,<1.25

3 Find alternative packages

4 Contact maintainers or file issues

5 Fork and patch (last resort)

Pro Tip

Use pipdeptree to understand why a specific version is required.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 36 / 56

Automated Dependency Management

Dependabot (GitHub):

1 # .github/dependabot.yml

2 version: 2

3 updates:

4 - package -ecosystem: "pip"

5 directory: "/"

6 schedule:

7 interval: "weekly"

8 open -pull -requests -limit: 10

Renovate Bot: More powerful, supports multiple ecosystems, custom rules.
pip-tools:

1 pip -compile --upgrade requirements.in

2 # Review changes in requirements.txt

3 pip -sync requirements.txt

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 37 / 56

Python Version Upgrades

Python 3.10 → 3.11 → 3.12 → 3.13
Considerations:

Check package compatibility on PyPI

Some C-extensions need time to release wheels

Performance improvements in newer versions

New language features (pattern matching, etc.)

Deprecation warnings matter

Recommended Approach

1 Wait 3-6 months after Python release

2 Check critical packages first (numpy, pandas, pytorch)

3 Test thoroughly with warnings enabled: python -W all

4 Keep one environment on old Python during transition

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 38 / 56

Dependency Resolution: Understanding the Algorithms

Why Resolution Matters:

Finding compatible versions across 100+ packages

Handling conflicting requirements

Speed vs. correctness trade-offs

Four Different Approaches:

1 Pip: Backtracking (The Detective)

2 Conda: SAT Solver (The Mathematician)

3 Poetry: Exhaustive Backtracking (The Planner)

4 uv: PubGrub in Rust (The Speedrunner)

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 39 / 56

Resolver Comparison: Algorithms and Trade-offs

Tool Algorithm Analogy Strength Weakness
Pip Backtracking The Detective. Follows

leads. If a lead goes cold,
goes back to the last clue.

Standard. Installed every-
where.

Can be slow on bad paths;
resolves only for current ma-
chine.

Conda SAT Solver The Mathematician.
Translates requirements
into a giant logic formula
and solves it all at once.

Handles complex non-Python
binaries (C libraries, compil-
ers).

Heavy memory usage; ”Solv-
ing environment...” can hang.

Poetry Exhaustive Backtrack-
ing

The Planner. Meticulously
maps out the entire plan
before doing anything.

Correctness. Guarantees
reproducible builds across
teams.

Slow. poetry lock is notori-
ously time-consuming on large
projects.

uv PubGrub (Rust) The Speedrunner. Sprints
through the maze, remem-
bering every dead end so it
never double-checks.

Speed. Instant resolution;
true universal locking.

Newer tool; ecosystem is still
maturing (though rapidly).

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 40 / 56

Resolution Strategies: When to Use Each

Use Pip when:

Simple, pure-Python projects

Quick prototyping

Standard environments

Use Conda when:

Scientific computing

Non-Python dependencies

Complex C/C++ libraries

Use Poetry when:

Team collaboration

Publishing packages

Guaranteed reproducibility

Use uv when:

Speed is critical

CI/CD pipelines

Large dependency trees

Modern Python projects

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 41 / 56

Using Poetry for Project Management

1 # Install Poetry

2 curl -sSL https :// install.python -poetry.org | python3 -

3

4 # Create project

5 poetry new myproject

6 cd myproject

7

8 # Add dependencies

9 poetry add numpy pandas scikit -learn

10 poetry add --group dev pytest black

11

12 # Install everything

13 poetry install

14

15 # Run in environment

16 poetry run python script.py

17 poetry shell # Activate environment

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 42 / 56

Using uv: The Fast Alternative to Poetry

What is uv?

Written in Rust (extremely fast)

10-100x faster than pip/poetry

Drop-in pip replacement

Built-in virtual env management

Compatible with standard tools

Key Features:

Single binary install

Works with existing projects

Supports pyproject.toml

Fast dependency resolution

No separate venv step needed

When to Use uv

Choose uv for speed-critical workflows, CI/CD pipelines, or when you want pip-like simplicity
with modern performance.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 43 / 56

uv in Practice

Installation:

1 # Linux/macOS

2 curl -LsSf https :// astral.sh/uv/install.sh | sh

3 # Windows

4 powershell -c "irm https :// astral.sh/uv/install.ps1 | iex"

5 # With pip (fallback)

6 pip install uv

Basic Usage:

1 # Create project with virtual environment

2 uv venv

3 source .venv/bin/activate # or .venv\Scripts\activate on Windows

4 # Install packages (much faster than pip)

5 uv pip install numpy pandas scikit -learn

6 # Install from requirements.txt

7 uv pip install -r requirements.txt

8 # Compile requirements with dependencies

9 uv pip compile requirements.in -o requirements.txt

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 44 / 56

uv vs. Poetry vs. pip: Quick Comparison

Feature pip Poetry uv
Speed Baseline Slow 10-100x faster
Virtual envs Manual Built-in Built-in
Lock files Manual Yes Via compile
Project init No Yes No
Learning curve Low Medium Low
Compatibility 100% Good 100% pip
Dependency resolution Good Excellent Excellent
Production ready Yes Yes Yes

Recommendation: Use uv for speed and pip compatibility, Poetry for full project
management with opinionated structure.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 45 / 56

Pyproject.toml (PEP 621)

1 [project]

2 name = "my-data -project"

3 version = "0.1.0"

4 requires -python = " >=3.10"

5 dependencies = [

6 "numpy >=1.24 , <2.0" ,

7 "pandas >=2.0" ,

8 "scikit -learn >=1.3" ,

9]

10
11 [project.optional -dependencies]

12 dev = ["pytest >=7.0" , "black >=23.0"]

13 viz = ["matplotlib >=3.7" , "seaborn >=0.12"]

14
15 [build -system]

16 requires = ["setuptools >=61.0"]

17 build -backend = "setuptools.build_meta"

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 46 / 56

Cross-Platform Considerations

Linux → macOS → Windows differences:

1 # File paths

2 os.path.join(’data’, ’file.csv’) # Platform -agnostic

3 pathlib.Path(’data’) / ’file.csv’ # Even better

4

5 # Line endings

6 # Use ’newline =""’ in open() for CSV files

Package availability:

Some packages are Linux-only (e.g., some system tools)

Windows requires pre-built wheels for C-extensions

macOS ARM64 (M1/M2/M3) support still catching up

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 47 / 56

Testing Your Environment

1 # test_environment.py

2 import sys

3 import numpy as np

4 import pandas as pd

5 import sklearn

6
7 def test_imports ():

8 """Test that critical packages import correctly."""

9 assert sys.version_info >= (3, 10)

10 print(f"Python: {sys.version}")

11 print(f"NumPy: {np.__version__}")

12 print(f"Pandas: {pd.__version__}")

13 print(f"Scikit -learn: {sklearn.__version__}")

14
15 def test_numerical_stability ():

16 """Test basic numerical operations."""

17 arr = np.random.rand (1000 , 1000)

18 result = np.linalg.inv(arr @ arr.T)

19 assert result.shape == (1000, 1000)

20
21 if __name__ == "__main__":

22 test_imports ()

23 test_numerical_stability ()

24 print("Environment OK!")

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 48 / 56

Quick Reference: Decision Tree

1 Need reproducibility? → Lock files + containers

2 Scientific computing? → Use conda/miniforge

3 Pure Python project? → venv + pip + pip-tools

4 Production deployment? → Docker + pinned versions

5 Jupyter notebook? → Install in each environment

6 System libraries needed? → Use conda or system packages

7 Bleeding edge features? → Git + commit SHA

8 Team collaboration? → Environment files + documentation

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 49 / 56

Best Practices Checklist

□ Use virtual environments (always!)

□ Pin dependencies in production

□ Document system requirements

□ Test on target platforms

□ Keep environment files in version control

□ Automate environment creation

□ Regular security updates

□ Use CI/CD to test environments

□ Monitor for breaking changes

□ Document upgrade procedures

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 50 / 56

Common Pitfalls to Avoid

Don’t

Install packages globally with sudo/admin (with a grain of salt)

Use pip install --user (confusing!)

Mix conda and pip randomly

Ignore warnings during installation

Use latest/master in requirements

Skip testing after upgrades (because they fail...)

Commit notebooks with outputs/data

Upgrade everything at once

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 51 / 56

Tools Comparison Matrix

Feature venv+pip uv conda poetry docker
Learning curve Low Low Medium Medium High
Speed Fast Very Fast Slow Fast Medium
Reproducibility Good Good Good Excellent Excellent
System libs No No Yes No Yes
Multi-language No No Yes No Yes
Lock files Manual Via compile Yes Yes N/A
Python only Yes Yes No Yes No
Production Yes Yes Yes Yes Yes

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 52 / 56

Recommended Workflow

Daily Development

1 Use conda/mamba OR venv+pip

2 Keep requirements/environment file updated

3 Test regularly

4 Document system dependencies

Pre-Production
1 Pin all versions exactly

2 Create lock file

3 Build Docker image

4 Test on target platform

5 Document upgrade procedure

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 53 / 56

Essential Resources

Official Documentation:

Python Packaging Guide: https://packaging.python.org

Conda Documentation: https://docs.conda.io

Docker Documentation: https://docs.docker.com

PyPI: https://pypi.org

Community Resources:

conda-forge: https://conda-forge.org

Python Packaging Authority: https://www.pypa.io

Tools:

Poetry: https://python-poetry.org

uv: https://github.com/astral-sh/uv

pip-tools: https://github.com/jazzband/pip-tools

Miniforge: https://github.com/conda-forge/miniforge

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 54 / 56

https://packaging.python.org
https://docs.conda.io
https://docs.docker.com
https://pypi.org
https://conda-forge.org
https://www.pypa.io
https://python-poetry.org
https://github.com/astral-sh/uv
https://github.com/jazzband/pip-tools
https://github.com/conda-forge/miniforge

Getting Help

When Things Go Wrong:
1 Check error messages carefully
2 Search for the error on Stack Overflow/AI overview (with a grain of salt for fake solutions)
3 Check package issue trackers on GitHub
4 Verify your Python/package versions
5 Try in a fresh environment
6 Ask on community forums

Key Debugging Commands:

pip list - See what’s installed

pip check - Find conflicts

pip show package - Package details

python -m site - Python paths

which python / where python - Python location

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 55 / 56

Conclusions

Key Takeaways

Dependency management is crucial for reproducible data science

Choose tools based on needs (conda for science, venv for pure Python)

Always use isolated environments

Pin versions for production

Test upgrades carefully

Document everything

Containerize for deployment

Document everything and keep order

Questions? Confused?
Happy environment managing!

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025 56 / 56

	
	Introduction: The Dependency Challenge
	Package Management Fundamentals
	Native vs. C-Extension Packages
	Version Management and Discovery
	Source Control Best Practices
	Conda vs. Miniforge
	Containerization Strategies
	Jupyter Notebook Best Practices
	System and Package Upgrades
	Advanced Topics and Tools
	Practical Guidelines Summary
	Resources and Further Reading

