Managing Third-Party Libraries:

A Survival Guide for Data Scientists

Francesco P. Lovergine <francesco@lovergine.com>

November 25, 2025

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Table of Contents

@ Introduction: The Dependency Challenge
9 Package Management Fundamentals
© Native vs. C-Extension Packages
@ Version Management and Discovery
© Source Control Best Practices

@ Conda vs. Miniforge

@ Containerization Strategies

e Jupyter Notebook Best Practices
9 System and Package Upgrades

@ Advanced Topics and Tools

@ Practical Guidelines Summary

@ Resources and Further Reading

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Researcher at CNR-IREA in Italy
One of the ~ 1,000 Debian developers (as frankie@debian.org)
DebianGis team founder (about 20 years ago)

Old-school computer scientist and geek

The culprit of Giuseppe's transformation from a forest scientist to a Linux addict, even

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

The Modern Data Science Stack

The Reality: Common Problems:
@ 100+ dependencies per project @ "It works on my machine”
e Multiple languages (Python, R, C/C++) @ Version conflicts
@ Cross-platform requirements @ Breaking changes

@ Rapid ecosystem evolution o Platform-specific issues

Reproducible, maintainable, and reliable data science environments across Linux, macQS, and
Windows.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

What We'll Cover

Package management fundamentals

System packages vs. language-specific packages
Native vs. C/C++-extension packages

Version management and discovery

Source control best practices

Conda vs. Miniforge

Containerization strategies

Jupyter notebook management

0000000 O0CO

Upgrade strategies and dependency resolution

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

e Package Management Landscap

System-Level:

. # Debian/Ubuntu Language-Level:

> apt install python3-numpy o i b

ip install
, # RHEL/Fedora pip install numpy

dnf install python3-numpy 4 R

1
2
3
4
. % macOS Z install.packages ("dplyr")
7
8

brew install numpy # Julia

& GNU Cuix using Pkg; Pkg.add("DataFrames")

guix install python-numpy

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

System Packages: Pros and Cons

Advantages: Disadvantages:
@ System-wide availability o Often outdated
@ Security updates Limited selection
Dependency resolution Requires root/admin

o
@ Tested for your OS OS-specific
o

No compilation needed Can't have multiple versions

Recommendation

Use system packages for: base Python/R, system libraries (BLAS, LAPACK, OpenSSL),
development tools.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Language Package Managers

Python Ecosystem:

1 pip install package_name # PyPI
2 pip install package_name==1.2.3 # Specific version
3 pip install -r requirements.txt # From file

Key Files:

@ requirements.txt - Pin exact versions

@ setup.py / pyproject.toml - Package metadata

@ constraints.txt - Version boundaries

Best Practice

Always use virtual environments: python3 [--system-site-packages | --copies] -m
venv myenv

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Understanding Package Types

Pure Python Packages

@ Written entirely in Python

@ Platform-independent
o Examples: requests, click, pytest

@ Fast installation, slower execution

o

C-Extension Packages

o Contains compiled C/C++4-/Fortran code

o Platform-specific binaries (wheels)
@ Examples: numpy, pandas, scipy
°

Requires compilation if no wheel available

A\

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Working with C-Extensions

Pre-compiled Wheels (Preferred):

1 pip install numpy # Downloads wheel if available

Source Installation (Fallback):

1 # Requires build tools

> apt install build-essential python3-dev # Ubuntu

3 dnf install gcc python3-devel # Fedora

4 brew install gcc # macO0S

5

6 pip install numpy --no-binary :all: # Force source

Source builds need: compiler, headers, BLAS/LAPACK libraries, correct environment variables
(CFLAGS, LDFLAGS).

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Performance Considerations

Package Type Installation | Runtime
Pure Python Fast Slower
C-Extension (wheel) Fast Fast
C-Extension (source) Slow Fast

CPU Architecture Matters

Modern packages optimize for:
@ SSE/AVX instructions (x86_64)
e Apple Silicon (ARM64)
o CUDA for GPU computing

Choose the right wheel for your hardware!

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Discovering Package Versions

2

1
2
3

Installed packages:

pip 1list #
pip show numpy #
pip list --outdated #

Available versions:

pip index versions numpy #
pip install numpy== #

A1l installed
Details for one
Update candidates

A1l PyPI versions
Error shows versions

Dependency tree for installed packages:

pip install pipdeptree
pipdeptree #
pipdeptree -p numpy #

Show dependencies
Reverse dependencies

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Version Pinning Strategies

Exact Pinning: Compatible Release:
| numpy==1.24.3 1 numpy~=1.24.0 # >=1.24.0, <1.25.0
> pandas==2.0.1 2 pandas>=2.0,<3.0
3 scikit-learn==1.2.2 3 scikit-learn>=1.2

Pros: Fully reproducible Pros: Patch updates

Cons: No security updates Cons: Can break

Recommended Approach

Development: use compatible releases
Production: pin exact versions with pip freeze > requirements.txt

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Lock Files for Reproducibility

Problem: requirements.txt doesn't capture transitive dependencies.
Solution: Use lock files:

1 # Poetry
poetry lock
poetry install

Pipenv
pipenv lock
pipenv install --deploy

© o N o U A W N

pip-tools
10 pip-compile requirements.in
11 pip-sync requirements.txt

Key Benefit

Lock files capture the entire dependency graph with exact versions, ensuring identical
environments across machines.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists

GitHub Repository: Releases vs. Branches

Releases/Tags (Stable): Branches (Development):
| pip install git+https:// 1 pip install git+https://
> github.com/user/repo.git 2 github.com/user/repo.git
3 ev1.2.3 3 @main
4 4
> # Or download release 5 # Specific commit
> pip install https://github. 6 pip install git+https://
7 com/user/repo/archive/ 7 github.com/user/repo.git
3 vli.2.3.tar.gz 8 @abc1234

Never use ®@main or @master in production! These are moving targets and break
reproducibility.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

When to Use Git Installations

Appropriate Use Cases

@ Testing unreleased bug fixes
o Contributing to development
@ Using features not yet in PyPI release

@ Private repositories (with authentication)

Better Alternatives

o Wait for official release
@ Fork and create your own release
o Build a wheel and host internally

@ Use commit SHA, not branch names

Production Rule

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Handling Private Packages

Option 1: Private PyPI Server

1 pip install --index-url https://pypi.company.com/simple/ \
company -package

Option 2: Git with SSH Keys
1 pip install git+ssh://git@github.com/company/private@vl.0.0

Option 3: Build and Share Wheels

N

1 python -m build # Creates dist/*.whl
2> pip install dist/package-1.0.0-py3-none-any.whl

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

The Conda Ecosystem

What is Conda?
Cross-platform, language-agnostic package and environment manager. Not just for Python!

Anaconda: Miniconda:
e Full distribution (3+ GB) e Minimal installer
@ 250+ pre-installed packages @ Only conda + Python
@ Commercial use restrictions @ Same license as Anaconda
o defaults channel @ defaults channel

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Introducing Miniforge
What is Miniforge?
Community-driven conda installer using conda-forge channel by default.

Key Advantages:

Completely free and open source

No commercial restrictions

conda-forge channel (more packages, faster updates)
Better ARM64/Apple Silicon support

Faster package builds

Mamba included (faster resolver)

Recommendation
Use Miniforge for new projects. It's the future of conda.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Conda vs. Pip: Key Differences

Feature Conda Pip

Languages Any (Python, R, C+4) | Python only

Binary packages | Yes, always Wheels when available
System libraries | Included System-dependent
Repository conda-forge PyPI

You can use both conda and pip in the same environment, but install conda packages first,
then pip packages.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

1
2

Conda Environment Management

Creating Environments:

conda create
conda activate myproject

-n myproject python=3.11

Environment Files (environment.yml):

name: myproject
channels:

conda-forge
defaults

dependencies:

Francesco P. Lovergine <francesco@lovergine.com>

python=3.11

numpy=1.24
pandas=2.0
pip:

- some-pip-only-package==1.0.0

Dependency Management for Data Scientists

November 25, 2025

Mamba: The Fast Alternative

What is Mamba?

o C++ reimplementation of conda

o Parallel downloads

@ Better dependency resolution

@ Drop-in replacement: mamba instead of conda
Installation:

1 conda install -n base mamba # In regular conda
2 # Or use Miniforge3 (includes mamba by default)

Usage:

1 mamba install numpy pandas scikit-learn # Much faster!
> mamba create -n myenv python=3.11 numpy

Performance
Mamba can be 10-100x faster than conda for complex environments.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists

When to Containerize

Use Containers When: . .
Skip Containers When:

@ Deploying to production . .
Simple exploration

@ Complex system dependencies .
) o Interactive development
@ Ensuring reproducibility L
. o . GPU access is tricky
Multiple conflicting projects)
. Resource constraints
Team collaboration

Cl/CD pipelines

Golden Rule
Use virtual environments for development, containers for deployment.

Learning/prototyping

Francesco P. Lovergine <francesco®@lovergine.com> Dependency Management for Data Scientists November 25, 2025

© N oA WN R

11
12
13
14
15
16

Docker for Data Science

Basic Dockerfile:

FROM python:3.11-slim
WORKDIR /app

System dependencies

RUN apt-get update && apt-get install -y \
build-essential \
&% rm -rf /var/lib/apt/lists/*

Python dependencies
COPY requirements.txt

RUN pip install --no-cache-dir -r requirements.txt
COPY
CMD ["python", "train_model.py"]

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists

November 25, 2025

Multi-Stage Builds

Optimize image size:

Build stage

FROM python:3.11 as builder

WORKDIR /app

COPY requirements.txt

RUN pip install --user --no-cache-dir -r requirements.txt

Runtime stage

FROM python:3.11-slim

WORKDIR /app

COPY --from=builder /root/.local /root/.local
COPY

ENV PATH=/root/.local/bin:$PATH

CMD ["python", "app.py"]

Build stage has compilers and build tools. Runtime stage is minimal.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Docker Compose for Data Pipelines

1 version: ’3.87

2 services:

3 jupyter:

4 build:

5 ports:

6 - "8888:8888"

7 volumes:

8 - ./notebooks:/app/notebooks
9 - ./data:/app/data

10 environment:

11 - JUPYTER_ENABLE_LAB=yes

12

13 database:

14 image: postgres:15

15 environment :

16 - POSTGRES_PASSWORD=secret
17 volumes :

18 - pgdata:/var/lib/postgresql/data
19

20 volumes:
21 pgdata:

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management f¢ ta Scientists

Alternative Container Tools

Docker Alternatives:
@ Podman: Daemonless, rootless containers
e Singularity /Apptainer: HPC-focused, no root required
@ LXC/LXD: System containers (not just applications)

Singularity for HPC:
@ Designed for multi-user clusters
@ Better GPU integration

@ Can run Docker images

@ Single-file containers

HPC Recommendation
Use Singularity if deploying to academic/research clusters.

November 25, 2025

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists

The Jupyter Challenge

Common Problems:
Kernel doesn't match environment
Package imports fail mysteriously

°
°
@ “Works in notebook, fails in script”
@ Notebooks aren't reproducible

°

Hard to version control

Root Causes:
Global Jupyter vs. project-specific kernels
Hidden state and execution order

Cell outputs in version control

Implicit dependencies

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Setting Up Jupyter Properly

Install Jupyter in Each Environment:

Create environment
python -m venv myproject
source myproject/bin/activate

Install Jupyter + kernel registration

pip install jupyter ipykernel

python -m ipykermnel install --user --name=myproject \
--display-name="Python (myproject)"

@ N oG W N

Ll
o ©

Launch Jupyter
jupyter lab

-
=

Each environment gets its own kernel. Select the right kernel in Jupyter.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Jupyter with Conda/Mamba

Create conda environment
mamba create -n datasci python=3.11 jupyter numpy pandas
mamba activate datasci

The kernel is automatically registered
jupyter lab

To see all kermels
jupyter kernelspec list

To remove a kermel
jupyter kernelspec uninstall myproject

Common Mistake

Installing Jupyter globally and trying to import project packages. Always install Jupyter in your
project environment!

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Version Control for Notebooks

Problem: Notebooks contain outputs, metadata, execution counts.
Solution 1: Strip outputs before committing

Using nbconvert
jupyter nbconvert --clear-output --inplace notebook.ipynb

Using nbstripout (recommended)
pip install nbstripout
nbstripout notebook.ipynb

Git hook (automatic)
nbstripout --install

© © N o U A W N e

Solution 2: Use Jupytext

1 pip install jupytext
2 jupytext --to py:percent notebook.ipynb # Sync with .py

Commits the .py file instead of .ipynb!

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Notebook to Production Code

@ Explore in notebooks

@ Extract functions to .py modules
© Import modules in notebooks

@ Test modules independently

© Use notebooks for visualization only

Project Structure:

@ project/
notebooks,/ (exploration.ipynb)
src/ (data.py, models.py)
tests/

o
o
o
@ requirements.txt

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

© 0N oA W N

Lo
o

Jupyter Extensions and Tools

Useful Extensions:

JupyterLab extensions

pip install jupyterlab-git # Git integration
pip install jupyterlab-1lsp # Code completion
pip install jupyterlab-code-formatter # Auto-format

Variable inspector
pip install lckr-jupyterlab-variableinspector

Table of contents
pip install jupyterlab-toc

Papermill for Notebook Automation:

pip install papermill
papermill input.ipynb output.ipynb -p paraml valuel

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists

November 25, 2025

The Upgrade Challenge

Murphy's Law of Dependencies

“If you upgrade any package, something will break.”

Types of Upgrades:
© System OS upgrade (Ubuntu 22.04 — 24.04)
@ Python version upgrade (3.10 — 3.11)
© Major package upgrade (pandas 1.x — 2.x)
© Transitive dependency update
Cascade Effects:
@ System upgrade — Python upgrade — rebuild all packages
o NumPy upgrade — Pandas, SciPy, Scikit-learn need updates

@ One security patch — entire tree needs resolution

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Safe Upgrade Strategy

Step 1: Assess Current State

1 pip list --outdated
2 pip check # Find conflicts

Step 2: Create Backup

1 pip freeze > requirements-backup.txt
2 conda env export > environment-backup.yml

Step 3: Test in Isolation

1 python -m venv test-upgrade

> source test-upgrade/bin/activate

3 pip install -r requirements-backup.txt

4 pip install --upgrade package-to-upgrade
5 # Run tests!

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Handling Dependency Conflicts

Understanding Conflicts:
1 $§ pip install package-a package-b
2 ERROR: package-a requires numpy>=1.24
3 package-b requires numpy<1.24

Resolution Strategies:
@ Check if newer versions of both packages work together
@ Use a compatible release constraint: numpy>=1.23,<1.25
© Find alternative packages
@ Contact maintainers or file issues
@ Fork and patch (last resort)

Use pipdeptree to understand why a specific version is required.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Automated Dependency Management

Dependabot (GitHub):

1 # .github/dependabot.yml

2 version: 2

3 updates:

4 - package-ecosystem: "pip"

5 directory: "/"

6 schedule:

7 interval: "weekly"

8 open-pull-requests-limit: 10

Renovate Bot: More powerful, supports multiple ecosystems, custom rules.
pip-tools:

1 pip-compile --upgrade requirements.in

2 # Review changes in requirements.txt

3 pip-sync requirements.txt

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Python Version Upgrades

Python 3.10 — 3.11 — 3.12 — 3.13
Considerations:

Check package compatibility on PyPI
Some C-extensions need time to release wheels
Performance improvements in newer versions

New language features (pattern matching, etc.)

Deprecation warnings matter

Recommended Approach
@ Wait 3-6 months after Python release
@ Check critical packages first (numpy, pandas, pytorch)

© Test thoroughly with warnings enabled: python -W all

© Keep one environment on old Python during transition

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Dependency Resolution: Understanding the Algorithms

Why Resolution Matters:
e Finding compatible versions across 100+ packages
@ Handling conflicting requirements

@ Speed vs. correctness trade-offs

Four Different Approaches:
@ Pip: Backtracking (The Detective)
@ Conda: SAT Solver (The Mathematician)
© Poetry: Exhaustive Backtracking (The Planner)
© uv: PubGrub in Rust (The Speedrunner)

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Resolver Comparison: Algorithms an

Francesco

Trade-offs

Tool Algorithm Analogy Strength Weakness

Pip Backtracking The Detective. Follows Standard. Installed every- Can be slow on bad paths;
leads. If a lead goes cold, where. resolves only for current ma-
goes back to the last clue. chine.

Conda SAT Solver The Mathematician. Handles complex non-Python Heavy memory usage; " Solv-
Translates requirements binaries (C libraries, compil- ing environment...” can hang.
into a giant logic formula ers).
and solves it all at once.

Poetry Exhaustive Backtrack- The Planner. Meticulously Correctness. Guarantees Slow. poetry lock is notori-

ing maps out the entire plan reproducible builds across ously time-consuming on large
before doing anything. teams. projects.

uv PubGrub (Rust) The Speedrunner. Sprints Speed. Instant resolution; Newer tool; ecosystem is still

through the maze, remem-
bering every dead end so it
never double-checks.

true universal locking.

maturing (though rapidly).

Lovergine <fi

cesco®@lovergine.com>

Dependency Management f¢

ta Scientists

Resolution Strategies: When to Use Each

. Use Poetry when:
Use Pip when: _

) . @ Team collaboration

@ Simple, pure-Python projects L

) _ @ Publishing packages
@ Quick prototyping o
i @ Guaranteed reproducibility
@ Standard environments
Use uv when:

Use Conda when: .
@ Speed is critical
e CI/CD pipelines

@ Large dependency trees

@ Scientific computing
@ Non-Python dependencies

o Complex C/C++ libraries
P / @ Modern Python projects

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Using Poetry for Project Management

Install Poetry
curl -sSL https://install.python-poetry.org | python3 -

1
2
3
4 # Create project

5 poetry new myproject
6 cd myproject

7

8

9

Add dependencies
poetry add numpy pandas scikit-learn
10 poetry add --group dev pytest black

12 # Install everything
13 poetry install

15 # Run in environment
16 poetry run python script.py
17 poetry shell # Activate environment

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Using uv: The Fast Alternative to Poetry

What is uv? Key Features:
@ Written in Rust (extremely fast) @ Single binary install
@ 10-100x faster than pip/poetry e Works with existing projects
@ Drop-in pip replacement @ Supports pyproject.toml
@ Built-in virtual env management @ Fast dependency resolution
o Compatible with standard tools @ No separate venv step needed

Choose uv for speed-critical workflows, Cl/CD pipelines, or when you want pip-like simplicity
with modern performance.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

uv in Practice

Installation:

Linux/macO0S

curl -LsSf https://astral.sh/uv/install.sh | sh

Windows

powershell -c "irm https://astral.sh/uv/install.psl | iex"
With pip (fallback)

pip install uv

-

o 0 » W N

Basic Usage:

-

Create project with virtual environment

uv venv

source .venv/bin/activate # or .venv\Scripts\activate on Windows
Install packages (much faster than pip)

uv pip install numpy pandas scikit-learn

Install from requirements.txt

uv pip install -r requirements.txt

Compile requirements with dependencies

uv pip compile requirements.in -o requirements.txt

© © N o O b W N

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

uv vs. Poetry vs. pip: Quick Comparison

Feature pip Poetry uv
Speed Baseline Slow 10-100x faster
Virtual envs Manual Built-in Built-in
Lock files Manual Yes Via compile
Project init No Yes No
Learning curve Low Medium Low
Compatibility 100% Good 100% pip
Dependency resolution Good Excellent Excellent
Production ready Yes Yes Yes

Recommendation: Use uv for speed and pip compatibility, Poetry for full project
management with opinionated structure.

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Pyproject.toml| (PEP 621)

[project]
name = "my-data-project"
version = "0.1.0"
requires-python = ">=3.10"
dependencies = [
"numpy >=1.24,<2.0",
"pandas >=2.0",
"scikit-learn>=1.3",

ONDUT A WN R

91

11 [project.optional-dependencies]
12 dev = ["pytest>=7.0", "black>=23.0"]
13 viz = ["matplotlib>=3.7", "seaborn>=0.12"]

15 [build-system]
16 requires = ["setuptools>=61.0"]
17 build-backend = "setuptools.build_meta"

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management f¢ ta Scientists

Cross-Platform Considerations

Linux — macOS — Windows differences:

1 # File paths

2 os.path.join(’data’, ’file.csv’) # Platform-agnostic
3 pathlib.Path(’data’) / ’file.csv’ # Even better

4

5 # Line endings

6 # Use ’newline=""’ in open() for CSV files

Package availability:
@ Some packages are Linux-only (e.g., some system tools)
@ Windows requires pre-built wheels for C-extensions
e macOS ARM64 (M1/M2/M3) support still catching up

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Testing Your Environment

test_environment.py
import sys

import numpy as np
import pandas as pd
import sklearn

def test_imports():

"""Test that critical packages import

assert sys.version_info >= (3, 10)
print (£"Python: {sys.version}")
print (£"NumPy: {np.__version__1}")
print (f"Pandas: {pd.__version__}")
print (£"Scikit-learn: {sklearn._
def test_numerical_stability():
"""Test basic numerical operations.
arr = np.random.rand (1000, 1000)
result = np.linalg.inv(arr @ arr.T)
assert result.shape == (1000, 1000)

if __name__ == "__main__":
test_imports ()
test_numerical_stability ()
print ("Environment OK!")

Francesco P. Lovergine <francesco@lovergine.com>

correctly."""

_version__2}")

wun

Dependency Management f¢

ta Scientists

Quick Reference: Decision Tree

© Need reproducibility? — Lock files + containers

@ Scientific computing? — Use conda/miniforge

© Pure Python project? — venv + pip + pip-tools

@ Production deployment? — Docker 4+ pinned versions

© Jupyter notebook? — Install in each environment

Q System libraries needed? — Use conda or system packages
@ Bleeding edge features? — Git + commit SHA

@ Team collaboration? — Environment files + documentation

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Best Practices Checklist

Use virtual environments (always!)

Pin dependencies in production
Document system requirements

Test on target platforms

Keep environment files in version control
Automate environment creation

Regular security updates

Use CI/CD to test environments

Monitor for breaking changes

I I Y 0 B

Document upgrade procedures

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Common Pitfalls to Avoid

Install packages globally with sudo/admin (with a grain of salt)
Use pip install --user (confusing!)

Mix conda and pip randomly

Ignore warnings during installation

Use latest/master in requirements

Skip testing after upgrades (because they fail...)

Commit notebooks with outputs/data

Upgrade everything at once

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Tools Comparison Matrix

Feature venv+pip uv conda poetry docker
Learning curve Low Low Medium Medium High
Speed Fast Very Fast Slow Fast Medium
Reproducibility Good Good Good Excellent Excellent
System libs No No Yes No Yes
Multi-language No No Yes No Yes
Lock files Manual Via compile Yes Yes N/A
Python only Yes Yes No Yes No
Production Yes Yes Yes Yes Yes

Francesco P. Lovergine < cesco@lovergine.com > Dependency Management fol a Scientists November 25, 2025

Recommended Workflow
Daily Development

@ Use conda/mamba OR venv+pip

@ Keep requirements/environment file updated

© Test regularly

© Document system dependencies

Pre-Production

© Pin all versions exactly
@ Create lock file

© Build Docker image

@ Test on target platform

© Document upgrade procedure

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Essential Resources

Official Documentation:
@ Python Packaging Guide: https://packaging.python.org
@ Conda Documentation: https://docs.conda.io
@ Docker Documentation: https://docs.docker.com
e PyPl: https://pypi.org
Community Resources:
o conda-forge: https://conda-forge.org
@ Python Packaging Authority: https://wuw.pypa.io
Tools:
@ Poetry: https://python-poetry.org
@ uv: https://github.com/astral-sh/uv
@ pip-tools: https://github.com/jazzband/pip-tools
@ Miniforge: https://github.com/conda-forge/miniforge

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

https://packaging.python.org
https://docs.conda.io
https://docs.docker.com
https://pypi.org
https://conda-forge.org
https://www.pypa.io
https://python-poetry.org
https://github.com/astral-sh/uv
https://github.com/jazzband/pip-tools
https://github.com/conda-forge/miniforge

Getting Help

When Things Go Wrong:
© Check error messages carefully
@ Search for the error on Stack Overflow/Al overview (with a grain of salt for fake solutions)
© Check package issue trackers on GitHub
@ Verify your Python/package versions
© Try in a fresh environment
Q@ Ask on community forums

Key Debugging Commands:
@ pip list - See what's installed
@ pip check - Find conflicts
@ pip show package - Package details
@ python -m site - Python paths

which python / where python - Python location

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

Conclusions

Key Takeaways

@ Dependency management is crucial for reproducible data science
Choose tools based on needs (conda for science, venv for pure Python)
Always use isolated environments

Pin versions for production

Test upgrades carefully

Document everything

Containerize for deployment

Document everything and keep order

Questions? Confused?
Happy environment managing!

Francesco P. Lovergine <francesco@lovergine.com> Dependency Management for Data Scientists November 25, 2025

	
	Introduction: The Dependency Challenge
	Package Management Fundamentals
	Native vs. C-Extension Packages
	Version Management and Discovery
	Source Control Best Practices
	Conda vs. Miniforge
	Containerization Strategies
	Jupyter Notebook Best Practices
	System and Package Upgrades
	Advanced Topics and Tools
	Practical Guidelines Summary
	Resources and Further Reading

