Estimation of tree height using GEDI dataset - Clean Data - Perceptron 2 - 2022

Base on data quality flag select more reilable tree height.

[44]:
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import scipy
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split

File storing tree hight (cm) obtained by 6 algorithms, with their associate quality flags. The quality flags can be used to refine and select the best tree height estimation and use it as tree height observation.

  • a?_95: tree hight (cm) at 95 quintile, for each algorithm

  • min_rh_95: minimum value of tree hight (cm) ammong the 6 algorithms

  • max_rh_95: maximum value of tree hight (cm) ammong the 6 algorithms

  • BEAM: 1-4 coverage beam = lower power (worse) ; 5-8 power beam = higher power (better)

  • digital_elev: digital mdoel elevation

  • elev_low: elevation of center of lowest mode

  • qc_a?: quality_flag for six algorithms quality_flag = 1 (better); = 0 (worse)

  • se_a?: sensitivity for six algorithms sensitivity < 0.95 (worse); sensitivity > 0.95 (beter )

  • deg_fg: (degrade_flag) not-degraded 0 (better) ; degraded > 0 (worse)

  • solar_ele: solar elevation. > 0 day (worse); < 0 night (better)

[45]:
height_6algorithms = pd.read_csv("tree_height/txt/eu_y_x_select_6algorithms_fullTable.txt", sep=" ",  index_col=False)
pd.set_option('display.max_columns',None)
height_6algorithms.head(6)
[45]:
ID X Y a1_95 a2_95 a3_95 a4_95 a5_95 a6_95 min_rh_95 max_rh_95 BEAM digital_elev elev_low qc_a1 qc_a2 qc_a3 qc_a4 qc_a5 qc_a6 se_a1 se_a2 se_a3 se_a4 se_a5 se_a6 deg_fg solar_ele
0 1 6.050001 49.727499 3139 3139 3139 3120 3139 3139 3120 3139 5 410.0 383.72153 1 1 1 1 1 1 0.962 0.984 0.968 0.962 0.989 0.979 0 17.7
1 2 6.050002 49.922155 1022 2303 970 872 5596 1524 872 5596 5 290.0 2374.14110 0 0 0 0 0 0 0.948 0.990 0.960 0.948 0.994 0.980 0 43.7
2 3 6.050002 48.602377 380 1336 332 362 1336 1340 332 1340 4 440.0 435.97781 1 1 1 1 1 1 0.947 0.975 0.956 0.947 0.981 0.968 0 0.2
3 4 6.050009 48.151979 3153 3142 3142 3127 3138 3142 3127 3153 2 450.0 422.00537 1 1 1 1 1 1 0.930 0.970 0.943 0.930 0.978 0.962 0 -14.2
4 5 6.050010 49.588410 666 4221 651 33 5611 2723 33 5611 8 370.0 2413.74830 0 0 0 0 0 0 0.941 0.983 0.946 0.941 0.992 0.969 0 22.1
5 6 6.050014 48.608456 787 1179 1187 761 1833 1833 761 1833 3 420.0 415.51581 1 1 1 1 1 1 0.952 0.979 0.961 0.952 0.986 0.975 0 0.2
[46]:
height_6algorithms_sel = height_6algorithms.loc[(height_6algorithms['BEAM'] > 4)
                                            &   (height_6algorithms['qc_a1'] == 1)
                                            &   (height_6algorithms['qc_a2'] == 1)
                                            &   (height_6algorithms['qc_a3'] == 1)
                                            &   (height_6algorithms['qc_a4'] == 1)
                                            &   (height_6algorithms['qc_a5'] == 1)
                                            &   (height_6algorithms['qc_a6'] == 1)
                                            &   (height_6algorithms['se_a1'] > 0.95)
                                            &   (height_6algorithms['se_a2'] > 0.95)
                                            &   (height_6algorithms['se_a3'] > 0.95)
                                            &   (height_6algorithms['se_a4'] > 0.95)
                                            &   (height_6algorithms['se_a5'] > 0.95)
                                            &   (height_6algorithms['se_a6'] > 0.95)
                                            &   (height_6algorithms['deg_fg'] == 0)
                                            &   (height_6algorithms['solar_ele'] < 0)]
[47]:
height_6algorithms_sel
[47]:
ID X Y a1_95 a2_95 a3_95 a4_95 a5_95 a6_95 min_rh_95 max_rh_95 BEAM digital_elev elev_low qc_a1 qc_a2 qc_a3 qc_a4 qc_a5 qc_a6 se_a1 se_a2 se_a3 se_a4 se_a5 se_a6 deg_fg solar_ele
7 8 6.050019 49.921613 3303 3288 3296 3236 3857 3292 3236 3857 7 320.0 297.68533 1 1 1 1 1 1 0.971 0.988 0.976 0.971 0.992 0.984 0 -33.9
11 12 6.050039 47.995344 2762 2736 2740 2747 3893 2736 2736 3893 5 390.0 368.55121 1 1 1 1 1 1 0.975 0.990 0.979 0.975 0.994 0.987 0 -37.3
14 15 6.050046 49.865317 1398 2505 2509 1316 2848 2505 1316 2848 6 340.0 330.40564 1 1 1 1 1 1 0.973 0.990 0.979 0.973 0.994 0.986 0 -18.2
15 16 6.050048 49.050020 984 943 947 958 2617 947 943 2617 6 300.0 291.22598 1 1 1 1 1 1 0.978 0.991 0.982 0.978 0.995 0.988 0 -35.4
16 17 6.050049 48.391359 3362 3332 3336 3351 4467 3336 3332 4467 5 530.0 504.78122 1 1 1 1 1 1 0.973 0.988 0.977 0.973 0.992 0.984 0 -5.1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1267207 1267208 9.949829 49.216272 2160 2816 2816 2104 3299 2816 2104 3299 8 420.0 386.44556 1 1 1 1 1 1 0.980 0.993 0.984 0.980 0.995 0.989 0 -16.9
1267211 1267212 9.949856 49.881190 3190 3179 3179 3171 3822 3179 3171 3822 6 380.0 363.69348 1 1 1 1 1 1 0.968 0.986 0.974 0.968 0.990 0.982 0 -35.1
1267216 1267217 9.949880 49.873435 2061 2828 2046 2024 2828 2828 2024 2828 7 380.0 361.06812 1 1 1 1 1 1 0.967 0.988 0.974 0.967 0.993 0.983 0 -35.1
1267227 1267228 9.949958 49.127182 366 2307 1260 355 3531 2719 355 3531 6 500.0 493.52792 1 1 1 1 1 1 0.973 0.989 0.978 0.973 0.993 0.985 0 -36.0
1267237 1267238 9.949999 49.936763 2513 2490 2490 2494 2490 2490 2490 2513 5 360.0 346.54227 1 1 1 1 1 1 0.968 0.988 0.974 0.968 0.993 0.983 0 -32.2

226892 rows × 28 columns

Calculate the mean height excluidng the maximum and minimum values

[48]:
height_sel =  pd.DataFrame({'ID' : height_6algorithms_sel['ID'] ,
                            'hm_sel': (height_6algorithms_sel['a1_95'] + height_6algorithms_sel['a2_95'] + height_6algorithms_sel['a3_95'] + height_6algorithms_sel['a4_95']
                             + height_6algorithms_sel['a5_95'] + height_6algorithms_sel['a6_95'] - height_6algorithms_sel['min_rh_95'] - height_6algorithms_sel['max_rh_95']) / 400 } )
[49]:
height_sel
[49]:
ID hm_sel
7 8 32.9475
11 12 27.4625
14 15 22.2925
15 16 9.5900
16 17 33.4625
... ... ...
1267207 1267208 26.5200
1267211 1267212 31.8175
1267216 1267217 24.4075
1267227 1267228 16.6300
1267237 1267238 24.9100

226892 rows × 2 columns

Import raw data, extracted predictors and show the data distribution

[50]:
predictors = pd.read_csv("tree_height/txt/eu_x_y_height_predictors_select.txt", sep=" ",  index_col=False)
pd.set_option('display.max_columns',None)
# change column name
predictors = predictors.rename({'dev-magnitude':'devmagnitude'} , axis='columns')
predictors.head(10)
[50]:
ID X Y h BLDFIE_WeigAver CECSOL_WeigAver CHELSA_bio18 CHELSA_bio4 convergence cti devmagnitude eastness elev forestheight glad_ard_SVVI_max glad_ard_SVVI_med glad_ard_SVVI_min northness ORCDRC_WeigAver outlet_dist_dw_basin SBIO3_Isothermality_5_15cm SBIO4_Temperature_Seasonality_5_15cm treecover
0 1 6.050001 49.727499 3139.00 1540 13 2113 5893 -10.486560 -238043120 1.158417 0.069094 353.983124 23 276.871094 46.444092 347.665405 0.042500 9 780403 19.798992 440.672211 85
1 2 6.050002 49.922155 1454.75 1491 12 1993 5912 33.274361 -208915344 -1.755341 0.269112 267.511688 19 -49.526367 19.552734 -130.541748 0.182780 16 772777 20.889412 457.756195 85
2 3 6.050002 48.602377 853.50 1521 17 2124 5983 0.045293 -137479792 1.908780 -0.016055 389.751160 21 93.257324 50.743652 384.522461 0.036253 14 898820 20.695877 481.879700 62
3 4 6.050009 48.151979 3141.00 1526 16 2569 6130 -33.654274 -267223072 0.965787 0.067767 380.207703 27 542.401367 202.264160 386.156738 0.005139 15 831824 19.375000 479.410278 85
4 5 6.050010 49.588410 2065.25 1547 14 2108 5923 27.493824 -107809368 -0.162624 0.014065 308.042786 25 136.048340 146.835205 198.127441 0.028847 17 796962 18.777500 457.880066 85
5 6 6.050014 48.608456 1246.50 1515 19 2124 6010 -1.602039 17384282 1.447979 -0.018912 364.527100 18 221.339844 247.387207 480.387939 0.042747 14 897945 19.398880 474.331329 62
6 7 6.050016 48.571401 2938.75 1520 19 2169 6147 27.856503 -66516432 -1.073956 0.002280 254.679596 19 125.250488 87.865234 160.696777 0.037254 11 908426 20.170450 476.414520 96
7 8 6.050019 49.921613 3294.75 1490 12 1995 5912 22.102139 -297770784 -1.402633 0.309765 294.927765 26 -86.729492 -145.584229 -190.062988 0.222435 15 772784 20.855963 457.195404 86
8 9 6.050020 48.822645 1623.50 1554 18 1973 6138 18.496584 -25336536 -0.800016 0.010370 240.493759 22 -51.470703 -245.886719 172.074707 0.004428 8 839132 21.812290 496.231110 64
9 10 6.050024 49.847522 1400.00 1521 15 2187 5886 -5.660453 -278652608 1.477951 -0.068720 376.671143 12 277.297363 273.141846 -138.895996 0.098817 13 768873 21.137711 466.976685 70

Merge the new height with the predictors table, using the ID as Primary Key

[51]:
predictors_hm_sel = pd.merge( predictors ,  height_sel , left_on='ID' ,  right_on='ID' ,  how='right')
[52]:
predictors_hm_sel.head(6)
[52]:
ID X Y h BLDFIE_WeigAver CECSOL_WeigAver CHELSA_bio18 CHELSA_bio4 convergence cti devmagnitude eastness elev forestheight glad_ard_SVVI_max glad_ard_SVVI_med glad_ard_SVVI_min northness ORCDRC_WeigAver outlet_dist_dw_basin SBIO3_Isothermality_5_15cm SBIO4_Temperature_Seasonality_5_15cm treecover hm_sel
0 8 6.050019 49.921613 3294.75 1490 12 1995 5912 22.102139 -297770784 -1.402633 0.309765 294.927765 26 -86.729492 -145.584229 -190.062988 0.222435 15 772784 20.855963 457.195404 86 32.9475
1 12 6.050039 47.995344 2746.25 1523 12 2612 6181 3.549103 -71279992 0.507727 -0.021408 322.920227 26 660.006104 92.722168 190.979736 -0.034787 16 784807 20.798000 460.501221 97 27.4625
2 15 6.050046 49.865317 2229.25 1517 13 2191 5901 31.054762 -186807440 -1.375050 -0.126880 291.412537 7 1028.385498 915.806396 841.586182 0.024677 16 766444 19.941267 454.185089 54 22.2925
3 16 6.050048 49.050020 959.00 1526 14 2081 6100 9.933455 -183562672 -0.382834 0.086874 246.288010 24 -12.283691 -58.179199 174.205566 0.094175 10 805730 19.849365 470.946533 78 9.5900
4 17 6.050049 48.391359 3346.25 1489 19 2486 5966 -6.957157 -273522688 2.989759 0.214769 474.409088 24 125.583008 6.154297 128.129150 0.017164 15 950190 21.179420 491.398376 85 33.4625
5 19 6.050053 49.877876 529.00 1531 12 2184 5915 -24.278454 -377335296 0.265329 -0.248356 335.534760 25 593.601074 228.712402 315.298340 -0.127365 17 764713 19.760756 448.580811 96 5.2900
[112]:
predictors_hm_sel = predictors_hm_sel.loc[(predictors['h'] < 5000) ]
[113]:
predictors_hm_sel
[113]:
ID X Y h BLDFIE_WeigAver CECSOL_WeigAver CHELSA_bio18 CHELSA_bio4 convergence cti devmagnitude eastness elev forestheight glad_ard_SVVI_max glad_ard_SVVI_med glad_ard_SVVI_min northness ORCDRC_WeigAver outlet_dist_dw_basin SBIO3_Isothermality_5_15cm SBIO4_Temperature_Seasonality_5_15cm treecover hm_sel
1 12 6.050039 47.995344 2746.25 1523 12 2612 6181 3.549103 -71279992 0.507727 -0.021408 322.920227 26 660.006104 92.722168 190.979736 -0.034787 16 784807 20.798000 460.501221 97 27.4625
2 15 6.050046 49.865317 2229.25 1517 13 2191 5901 31.054762 -186807440 -1.375050 -0.126880 291.412537 7 1028.385498 915.806396 841.586182 0.024677 16 766444 19.941267 454.185089 54 22.2925
5 19 6.050053 49.877876 529.00 1531 12 2184 5915 -24.278454 -377335296 0.265329 -0.248356 335.534760 25 593.601074 228.712402 315.298340 -0.127365 17 764713 19.760756 448.580811 96 5.2900
8 27 6.050083 49.281439 3921.25 1488 13 2345 5915 3.646593 -223499248 0.383314 0.062349 309.142609 25 862.362305 263.612793 249.693115 -0.068810 16 781120 17.538614 463.280243 100 39.2125
9 35 6.050119 49.928610 1765.00 1510 13 1976 5917 -2.138205 -393005696 -1.467515 -0.316702 301.649567 20 248.561035 164.831299 237.283447 -0.144407 19 773647 21.324263 465.046478 87 17.6500
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
226876 1267176 9.949637 49.887471 3266.50 1558 14 2074 6484 4.993805 -196691680 1.260540 0.044238 328.019165 26 -144.124023 -145.522949 -14.317627 0.020914 7 857229 17.376682 463.421387 98 32.6650
226878 1267180 9.949658 49.856387 497.00 1515 17 1956 6561 34.034641 -126274136 -0.959000 0.047194 260.889069 0 681.798340 657.745605 642.011475 0.050846 5 857225 21.177349 573.086243 12 4.9700
226879 1267184 9.949688 49.362831 2344.00 1517 15 2264 6499 9.173168 160967872 0.645957 -0.011381 447.678040 23 282.119385 79.830811 10.140381 0.014716 7 824157 18.283070 471.167419 89 23.4400
226881 1267189 9.949701 49.114458 2014.50 1529 12 2608 6632 27.137199 104082784 -0.481382 -0.012974 447.814392 21 187.934082 90.763672 168.527100 0.045602 18 907894 18.010750 473.227966 72 20.1450
226882 1267192 9.949731 49.893196 2891.00 1566 15 2088 6482 -36.581142 -219142496 1.348770 0.060537 331.815918 21 -68.830078 -160.909668 11.658203 -0.046048 11 857705 16.320225 450.409271 75 28.9100

116199 rows × 24 columns

[114]:
x_y_hm_sel = predictors_hm_sel[["X","Y","hm_sel"]]
x_y_hm_sel
[114]:
X Y hm_sel
1 6.050039 47.995344 27.4625
2 6.050046 49.865317 22.2925
5 6.050053 49.877876 5.2900
8 6.050083 49.281439 39.2125
9 6.050119 49.928610 17.6500
... ... ... ...
226876 9.949637 49.887471 32.6650
226878 9.949658 49.856387 4.9700
226879 9.949688 49.362831 23.4400
226881 9.949701 49.114458 20.1450
226882 9.949731 49.893196 28.9100

116199 rows × 3 columns

[115]:
#Normalize the data
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
data = scaler.fit_transform(x_y_hm_sel)
[116]:
#Inspect the ranges
fig,ax = plt.subplots(1,3,figsize=(15,5))
ax[0].hist(data[:,0],50)
ax[1].hist(data[:,1],50)
ax[2].hist(data[:,2],50)
[116]:
(array([4.4490e+03, 2.5580e+03, 2.3750e+03, 2.2710e+03, 2.7280e+03,
        3.3330e+03, 4.4110e+03, 5.5060e+03, 6.5250e+03, 7.5690e+03,
        8.9780e+03, 1.0236e+04, 1.1240e+04, 1.0795e+04, 9.7710e+03,
        7.9490e+03, 5.6670e+03, 3.7270e+03, 2.4290e+03, 1.4340e+03,
        8.8400e+02, 4.8700e+02, 2.8500e+02, 1.5300e+02, 1.0600e+02,
        6.5000e+01, 4.1000e+01, 2.4000e+01, 2.9000e+01, 2.2000e+01,
        1.6000e+01, 2.0000e+01, 1.5000e+01, 1.2000e+01, 1.5000e+01,
        5.0000e+00, 9.0000e+00, 8.0000e+00, 7.0000e+00, 7.0000e+00,
        7.0000e+00, 3.0000e+00, 2.0000e+00, 7.0000e+00, 4.0000e+00,
        2.0000e+00, 4.0000e+00, 6.0000e+00, 1.0000e+00, 2.0000e+00]),
 array([0.  , 0.02, 0.04, 0.06, 0.08, 0.1 , 0.12, 0.14, 0.16, 0.18, 0.2 ,
        0.22, 0.24, 0.26, 0.28, 0.3 , 0.32, 0.34, 0.36, 0.38, 0.4 , 0.42,
        0.44, 0.46, 0.48, 0.5 , 0.52, 0.54, 0.56, 0.58, 0.6 , 0.62, 0.64,
        0.66, 0.68, 0.7 , 0.72, 0.74, 0.76, 0.78, 0.8 , 0.82, 0.84, 0.86,
        0.88, 0.9 , 0.92, 0.94, 0.96, 0.98, 1.  ]),
 <a list of 50 Patch objects>)
../_images/CASESTUDY_Tree_Height_05Perceptron_pred_clean_2022_19_1.png
[117]:
#Split the data
X_train, X_test, y_train, y_test = train_test_split(data[:,:2], data[:,2], test_size=0.30, random_state=0)
X_train = torch.FloatTensor(X_train)
y_train = torch.FloatTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.FloatTensor(y_test)
print('X_train.shape: {}, X_test.shape: {}, y_train.shape: {}, y_test.shape: {}'.format(X_train.shape, X_test.shape, y_train.shape, y_test.shape))
X_train.shape: torch.Size([81339, 2]), X_test.shape: torch.Size([34860, 2]), y_train.shape: torch.Size([81339]), y_test.shape: torch.Size([34860])
[142]:
class Perceptron(torch.nn.Module):
    def __init__(self,input_size, output_size, use_activation_fn=False):
        super(Perceptron, self).__init__()
        self.fc = nn.Linear(input_size,output_size) # Initializes weights with uniform distribution centered in zero
        self.activation_fn = nn.ReLU() # instead of Heaviside step fn
        self.use_activation_fn = use_activation_fn # If we want to use an activation function
    def forward(self, x):
        output = self.fc(x)
        if self.use_activation_fn:
            output = self.activation_fn(output) # To add the non-linearity. Try training you Perceptron with and without the non-linearity
        return output
[143]:
# Create percetron
model = Perceptron(input_size=2, output_size=1 , use_activation_fn=True)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
[144]:
model.train()
epoch = 5000
all_loss=[]
for epoch in range(epoch):
    optimizer.zero_grad()
    # Forward pass
    y_pred = model(X_train)
    # Compute Loss
    loss = criterion(y_pred.squeeze(), y_train)

    # Backward pass
    loss.backward()
    optimizer.step()

    all_loss.append(loss.item())
[145]:
fig,ax=plt.subplots()
ax.plot(all_loss)
[145]:
[<matplotlib.lines.Line2D at 0x7f72adb26430>]
../_images/CASESTUDY_Tree_Height_05Perceptron_pred_clean_2022_24_1.png
[146]:
model.eval()
with torch.no_grad():
    y_pred = model(X_test)
    after_train = criterion(y_pred.squeeze(), y_test)
    print('Test loss after Training' , after_train.item())

    y_pred = y_pred.detach().numpy().squeeze()
    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(y_pred, y_test)

    fig,ax=plt.subplots()
    ax.scatter(y_pred, y_test)
    ax.set_xlabel('Prediction')
    ax.set_ylabel('True')
    ax.set_title('slope: {:.3f}, r_value: {:.3f}'.format(slope, r_value))
Test loss after Training 0.009606563486158848
../_images/CASESTUDY_Tree_Height_05Perceptron_pred_clean_2022_25_1.png