- SDM1 : Montane woodcreper - Gecomputation
- SDM1 : Montane woodcreper - Model
- SDM2 : Varied Thrush - Model
- Manipulate GSIM files
- Data type in GTiff
- Temporal interpolation of landsat images
- Dynamic Time Warping
- Estimating nitrogen and phosphorus concentrations in streams and rivers
- Estimating nitrogen concentrations in streams and rivers using NN
- Autoencoder (AE), Variational Autoencoder (VAE) and Generative Adversarial Network (GAN)
- LSTM Network
- Estimation of tree height using GEDI dataset - Data explore
- Estimation of tree height using GEDI dataset - Predictors extraction at point location
- Estimation of tree height using GEDI dataset - Random Forest prediction
- Estimation of tree height using GEDI dataset - Support Vector Machine for Regression (SVR) - 2022
- Estimation of tree height using GEDI dataset - Support Vector Machine for Regression (SVR) - 2023
- Estimation of tree height using GEDI dataset - Support Vector Machine for Regression (SVR) - 2024
- Exercise: explore the other parameters offered by the SVM library and try to make the model better. Some suggestions:
- Estimation of tree height using GEDI dataset - Perceptron 1 - 2022
- Estimation of tree height using GEDI dataset - Perceptron 1 - 2023
- Estimation of tree height using GEDI dataset - Perceptron - 2024
- Estimation of tree height using GEDI dataset - Perceptron tree prediction - 2023
- Estimation of tree height using GEDI dataset - Perceptron complete - 2024
- Estimation of tree height using GEDI dataset - Clean Data - Perceptron 2 - 2022
- Estimation of tree height using GEDI dataset - Neural Network 1
- Estimation of tree height using GEDI dataset - Neural Network 1 - 2024
- Neural Nets (pt.3), Interpretability and Convolutional Neural Networks
- Using Multi-layer Perceptron and Convolutional Neural Networks for Satellite image classification - 2022.
- Using Multi-layer Perceptron and Convolutional Neural Networks for Satellite image classification - 2023
- Using CNNs for a image dataset
- Prithvi 100M model
- Proposed exercises
- Autoencoder (AE), Variational Autoencoder (VAE)
- Implementing an Autoencoder
- Autoencoding MNIST
- Section 2
- Section 3 - Generative Models
- Using LSTM for time-series predictions
- Using GPT to implement a Convolutional Neural Networks for Satellite image classification.
- Classification in Python using pyjeo and sklearn
- Google Earth Engine use via Python, containers and other mythical beasts